Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TGen and Scottsdale Healthcare discover new 'pathways'

09.10.2009
Computer simulations validate treatment targets for lung cancer

Using computer modeling, the Translational Genomics Research Institute and Scottsdale Healthcare have discovered lung cancer 'pathways' that could become targets for new drugs, according to a scientific paper published online today by the Journal of Thoracic Oncology.

Dr. Glen Weiss, Director of Thoracic Oncology at TGen Clinical Research Services (TCRS) at Scottsdale Healthcare, said the study showed the value of conducting computer modeling, or "in silico" research.

TCRS is a partnership of TGen and Scottsdale Healthcare. The partnership allows molecular and genomic discoveries made by TGen and others around the world to reach the patient bedside in the Virginia G. Piper Cancer Center at Scottsdale Healthcare as quickly as possible through clinical trials with agents directed at specific cancer targets.

Researchers hope that over time in silico research will help lower health care costs while speeding up the process of turning scientific discoveries into treatments for patients.

"There are pathways that you can identify just from an in silico analysis. And we can use these types of tools to explore treatments for patients, down the road,'' said Dr. Weiss, an Associate Investigator in TGen's Cancer and Cell Biology Division and the senior author of the paper, which will appear in print in JTO's November edition.

The study sought to identify metabolic pathways — a series of chemical reactions occurring within a cell — that could be targeted by drugs in patients with both small-cell and large-cell lung cancers. Small-cell lung cancer represents about 15 percent of all lung cancers. The rest are classified as non-small cell lung cancer, of which large-cell lung cancer represents about 10 percent.

The study used publicly available data sets, searching for connections that may have been previously overlooked.

"Within those datasets, there are common pathways. We point out some examples that provide some proof-of-principle from the in silico search,'' said Dr. Weiss, who was joined in his research by TGen's Dr. Chris Kingsley and by Dr. Anoor Paripati of the Scottsdale Clinical Research Institute at Scottsdale Healthcare.

As an example, the study cites one particular signaling pathway, Wnt/ß-catenin, that could be targeted by two drugs, vorinostat and dasatinib, both of which are under study in clinical trials.

"This is an exploration of the publicly available data sets in an attempt to answer a new question. It shows that you can look at pathways and identify targets. We did our validation by looking at what's been tested, or what's available already,'' Dr. Weiss said.

In silico research, which is far less costly than conducting genetic profiling analysis of cancer tumors, will become more common as the National Cancer Institute ramps up its cancer Biomedical Informatics Grid, also known as caBIG.

Such in silico research should lead to targets for further laboratory and clinical research, and also should help clinicians provide more personalized treatment for patients, Dr. Weiss said.

"There is going to be a wealth of profiling data out there in the near future. You can then apply techniques like this, and hopefully design smarter clinical trials to find the drugs that would work,'' Dr. Weiss said.

About TGen

The Translational Genomics Research Institute (TGen) is a Phoenix, Arizona-based non-profit organization dedicated to conducting groundbreaking research with life changing results. Research at TGen is focused on helping patients with diseases such as cancer, neurological disorders and diabetes. TGen is on the cutting edge of translational research where investigators are able to unravel the genetic components of common and complex diseases. Working with collaborators in the scientific and medical communities, TGen believes it can make a substantial contribution to the efficiency and effectiveness of the translational process. TGen is affiliated with the Van Andel Research Institute in Grand Rapids, Michigan. For more information, please visit: www.tgen.org.

Press Contact:
Steve Yozwiak
TGen Senior Science Writer
602-343-8704
syozwiak@tgen.org
About the Virginia G. Piper Cancer Center at Scottsdale Healthcare
The Virginia G. Piper Cancer Center at Scottsdale Healthcare offers diagnosis, treatment, research, prevention and support in its facilities at the Scottsdale Healthcare Shea Medical Center, attracting patients from across Arizona and the U.S. Groundbreaking cancer research is conducted through its Scottsdale Clinical Research Institute and TGen Clinical Research Service. Scottsdale Healthcare is the not-for-profit parent organization of the Scottsdale Healthcare Shea Medical Center, Scottsdale Healthcare Osborn Medical Center and Scottsdale Healthcare Thompson Peak Hospital, Virginia G. Piper Cancer Center, Scottsdale Clinical Research Institute and Scottsdale Healthcare Foundation. For additional information, please visit www.shc.org.
Press Contact:
Keith Jones, Director of Public Relations
Virginia G. Piper Cancer Center at Scottsdale Healthcare
480-882-4412
kjones@shc.org

Steve Yozwiak | EurekAlert!
Further information:
http://www.tgen.org

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>