Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TGen and Scottsdale Healthcare discover new 'pathways'

09.10.2009
Computer simulations validate treatment targets for lung cancer

Using computer modeling, the Translational Genomics Research Institute and Scottsdale Healthcare have discovered lung cancer 'pathways' that could become targets for new drugs, according to a scientific paper published online today by the Journal of Thoracic Oncology.

Dr. Glen Weiss, Director of Thoracic Oncology at TGen Clinical Research Services (TCRS) at Scottsdale Healthcare, said the study showed the value of conducting computer modeling, or "in silico" research.

TCRS is a partnership of TGen and Scottsdale Healthcare. The partnership allows molecular and genomic discoveries made by TGen and others around the world to reach the patient bedside in the Virginia G. Piper Cancer Center at Scottsdale Healthcare as quickly as possible through clinical trials with agents directed at specific cancer targets.

Researchers hope that over time in silico research will help lower health care costs while speeding up the process of turning scientific discoveries into treatments for patients.

"There are pathways that you can identify just from an in silico analysis. And we can use these types of tools to explore treatments for patients, down the road,'' said Dr. Weiss, an Associate Investigator in TGen's Cancer and Cell Biology Division and the senior author of the paper, which will appear in print in JTO's November edition.

The study sought to identify metabolic pathways — a series of chemical reactions occurring within a cell — that could be targeted by drugs in patients with both small-cell and large-cell lung cancers. Small-cell lung cancer represents about 15 percent of all lung cancers. The rest are classified as non-small cell lung cancer, of which large-cell lung cancer represents about 10 percent.

The study used publicly available data sets, searching for connections that may have been previously overlooked.

"Within those datasets, there are common pathways. We point out some examples that provide some proof-of-principle from the in silico search,'' said Dr. Weiss, who was joined in his research by TGen's Dr. Chris Kingsley and by Dr. Anoor Paripati of the Scottsdale Clinical Research Institute at Scottsdale Healthcare.

As an example, the study cites one particular signaling pathway, Wnt/ß-catenin, that could be targeted by two drugs, vorinostat and dasatinib, both of which are under study in clinical trials.

"This is an exploration of the publicly available data sets in an attempt to answer a new question. It shows that you can look at pathways and identify targets. We did our validation by looking at what's been tested, or what's available already,'' Dr. Weiss said.

In silico research, which is far less costly than conducting genetic profiling analysis of cancer tumors, will become more common as the National Cancer Institute ramps up its cancer Biomedical Informatics Grid, also known as caBIG.

Such in silico research should lead to targets for further laboratory and clinical research, and also should help clinicians provide more personalized treatment for patients, Dr. Weiss said.

"There is going to be a wealth of profiling data out there in the near future. You can then apply techniques like this, and hopefully design smarter clinical trials to find the drugs that would work,'' Dr. Weiss said.

About TGen

The Translational Genomics Research Institute (TGen) is a Phoenix, Arizona-based non-profit organization dedicated to conducting groundbreaking research with life changing results. Research at TGen is focused on helping patients with diseases such as cancer, neurological disorders and diabetes. TGen is on the cutting edge of translational research where investigators are able to unravel the genetic components of common and complex diseases. Working with collaborators in the scientific and medical communities, TGen believes it can make a substantial contribution to the efficiency and effectiveness of the translational process. TGen is affiliated with the Van Andel Research Institute in Grand Rapids, Michigan. For more information, please visit: www.tgen.org.

Press Contact:
Steve Yozwiak
TGen Senior Science Writer
602-343-8704
syozwiak@tgen.org
About the Virginia G. Piper Cancer Center at Scottsdale Healthcare
The Virginia G. Piper Cancer Center at Scottsdale Healthcare offers diagnosis, treatment, research, prevention and support in its facilities at the Scottsdale Healthcare Shea Medical Center, attracting patients from across Arizona and the U.S. Groundbreaking cancer research is conducted through its Scottsdale Clinical Research Institute and TGen Clinical Research Service. Scottsdale Healthcare is the not-for-profit parent organization of the Scottsdale Healthcare Shea Medical Center, Scottsdale Healthcare Osborn Medical Center and Scottsdale Healthcare Thompson Peak Hospital, Virginia G. Piper Cancer Center, Scottsdale Clinical Research Institute and Scottsdale Healthcare Foundation. For additional information, please visit www.shc.org.
Press Contact:
Keith Jones, Director of Public Relations
Virginia G. Piper Cancer Center at Scottsdale Healthcare
480-882-4412
kjones@shc.org

Steve Yozwiak | EurekAlert!
Further information:
http://www.tgen.org

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>