Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TGen and Scottsdale Healthcare discover new 'pathways'

09.10.2009
Computer simulations validate treatment targets for lung cancer

Using computer modeling, the Translational Genomics Research Institute and Scottsdale Healthcare have discovered lung cancer 'pathways' that could become targets for new drugs, according to a scientific paper published online today by the Journal of Thoracic Oncology.

Dr. Glen Weiss, Director of Thoracic Oncology at TGen Clinical Research Services (TCRS) at Scottsdale Healthcare, said the study showed the value of conducting computer modeling, or "in silico" research.

TCRS is a partnership of TGen and Scottsdale Healthcare. The partnership allows molecular and genomic discoveries made by TGen and others around the world to reach the patient bedside in the Virginia G. Piper Cancer Center at Scottsdale Healthcare as quickly as possible through clinical trials with agents directed at specific cancer targets.

Researchers hope that over time in silico research will help lower health care costs while speeding up the process of turning scientific discoveries into treatments for patients.

"There are pathways that you can identify just from an in silico analysis. And we can use these types of tools to explore treatments for patients, down the road,'' said Dr. Weiss, an Associate Investigator in TGen's Cancer and Cell Biology Division and the senior author of the paper, which will appear in print in JTO's November edition.

The study sought to identify metabolic pathways — a series of chemical reactions occurring within a cell — that could be targeted by drugs in patients with both small-cell and large-cell lung cancers. Small-cell lung cancer represents about 15 percent of all lung cancers. The rest are classified as non-small cell lung cancer, of which large-cell lung cancer represents about 10 percent.

The study used publicly available data sets, searching for connections that may have been previously overlooked.

"Within those datasets, there are common pathways. We point out some examples that provide some proof-of-principle from the in silico search,'' said Dr. Weiss, who was joined in his research by TGen's Dr. Chris Kingsley and by Dr. Anoor Paripati of the Scottsdale Clinical Research Institute at Scottsdale Healthcare.

As an example, the study cites one particular signaling pathway, Wnt/ß-catenin, that could be targeted by two drugs, vorinostat and dasatinib, both of which are under study in clinical trials.

"This is an exploration of the publicly available data sets in an attempt to answer a new question. It shows that you can look at pathways and identify targets. We did our validation by looking at what's been tested, or what's available already,'' Dr. Weiss said.

In silico research, which is far less costly than conducting genetic profiling analysis of cancer tumors, will become more common as the National Cancer Institute ramps up its cancer Biomedical Informatics Grid, also known as caBIG.

Such in silico research should lead to targets for further laboratory and clinical research, and also should help clinicians provide more personalized treatment for patients, Dr. Weiss said.

"There is going to be a wealth of profiling data out there in the near future. You can then apply techniques like this, and hopefully design smarter clinical trials to find the drugs that would work,'' Dr. Weiss said.

About TGen

The Translational Genomics Research Institute (TGen) is a Phoenix, Arizona-based non-profit organization dedicated to conducting groundbreaking research with life changing results. Research at TGen is focused on helping patients with diseases such as cancer, neurological disorders and diabetes. TGen is on the cutting edge of translational research where investigators are able to unravel the genetic components of common and complex diseases. Working with collaborators in the scientific and medical communities, TGen believes it can make a substantial contribution to the efficiency and effectiveness of the translational process. TGen is affiliated with the Van Andel Research Institute in Grand Rapids, Michigan. For more information, please visit: www.tgen.org.

Press Contact:
Steve Yozwiak
TGen Senior Science Writer
602-343-8704
syozwiak@tgen.org
About the Virginia G. Piper Cancer Center at Scottsdale Healthcare
The Virginia G. Piper Cancer Center at Scottsdale Healthcare offers diagnosis, treatment, research, prevention and support in its facilities at the Scottsdale Healthcare Shea Medical Center, attracting patients from across Arizona and the U.S. Groundbreaking cancer research is conducted through its Scottsdale Clinical Research Institute and TGen Clinical Research Service. Scottsdale Healthcare is the not-for-profit parent organization of the Scottsdale Healthcare Shea Medical Center, Scottsdale Healthcare Osborn Medical Center and Scottsdale Healthcare Thompson Peak Hospital, Virginia G. Piper Cancer Center, Scottsdale Clinical Research Institute and Scottsdale Healthcare Foundation. For additional information, please visit www.shc.org.
Press Contact:
Keith Jones, Director of Public Relations
Virginia G. Piper Cancer Center at Scottsdale Healthcare
480-882-4412
kjones@shc.org

Steve Yozwiak | EurekAlert!
Further information:
http://www.tgen.org

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>