Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TGen researchers discover possible way to block the spread of deadly brain tumors

21.04.2009
Findings will be presented during the 100th annual meeting of the American Association for Cancer Research in Denver

Researchers at the Translational Genomics Research Institute (TGen) may have found a way to stop the often-rapid spread of deadly brain tumors.

A gene with the playful-sounding name NHERF-1 may be a serious target for drugs that could prevent malignant tumors from rapidly multiplying and invading other parts of the brain, according to a cover story in this month's edition of Neoplasia, an international journal of cancer research.

Cancer cell movement and rapid division are key characteristics of malignant brain tumors known as glioblastoma multiforme, or GBM.

Dr. Michael Berens, Director of TGen's Cancer and Cell Biology Division, said the recent findings are a major step toward devising a treatment for GBM, which because of its ability to rapidly grow within the brain often means patients have little time to survive.

"Controlling the actions of tumor cells by regulating NHERF-1 implicates it as a possible therapeutic target for treating brain cancer," said Dr. Kerri Kislin, a scientist in TGen's Cancer and Cell Biology Division.

"Our findings suggest a novel mechanism defining NHERF-1 as a 'molecular switch' that regulates the GBM tumor cell's ability to migrate or divide,'' said Dr. Kislin, the scientific paper's lead author.

Dr. Berens, the paper's senior author, said the advances made by TGen not only confirm NHERF-1 as a gene associated with brain tumors, but also pinpoint it as a possible cause for their rapid growth and spread of GBM.

"Dr. Kislin's work has meant a fast maturation of NHERF-1 from a candidate gene associated with glioma invasion to positioning it as having a verified role in contributing to the malignant behavior of the disease," Dr. Berens said.

TGen scientists are scheduled to present their findings at the 100th annual meeting of the American Association for Cancer Research, April 18-22 in Denver.

Glioblastomas are essentially incurable tumors, in part, because there is no way to remove them surgically and ensure that all of the invading tumor cells are gone, even when surgery is followed by radiation treatments and conventional anti-cancer drugs.

"A chemotherapeutic treatment which targets these migrating cells would therefore have significant ramifications on patient survival," said Dr. Jennifer M. Eschbacher, a Neuropathology Fellow at Barrow Neurological Institute, who examined tumors for the study.

"As a pathologist, I examined expression of NHERF-1 under the microscope in tumor sections, including both invading edges of tumor and cellular tumor cores. We found NHERF-1 to be robustly expressed by invading tumors cells, when compared to tumor cores, suggesting that this factor plays a significant role in tumor invasion,'' Dr. Eschbacher said.

In the study, depletion of NHERF-1 stopped the migration of glioma – brain cancer – cells, she said. "These results suggest that NHERF-1 plays an important role in tumor biology, and that targeted inhibition of this factor may have significant effects on patient treatment and survival.''

About Barrow Neurological Institute

Barrow Neurological Institute of St. Joseph's Hospital and Medical Center in Phoenix, Arizona, is internationally recognized as a leader in neurological research and patient care. Barrow treats patients with a wide range of neurological conditions, including brain and spinal tumors, cerebrovascular conditions, and neuromuscular disorders. Barrow's clinicians and researchers are devoted to providing excellent patient care and finding better ways to treat neurological disorders. For more information, visit: www.thebarrow.org/index.htm.

About TGen


The Translational Genomics Research Institute (TGen) is a Phoenix-based, non-profit organization dedicated to conducting groundbreaking research with life changing results. Research at TGen is focused on helping patients with diseases such as cancer, neurological disorders and diabetes. TGen is on the cutting edge of translational research where investigators are able to unravel the genetic components of common and complex diseases. Working with collaborators in the scientific and medical communities, TGen believes it can make a substantial contribution to the efficiency and effectiveness of the translational process. For more information, visit: www.tgen.org.

Steve Yozwiak | EurekAlert!
Further information:
http://www.tgen.org

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>