Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TGen researchers discover possible way to block the spread of deadly brain tumors

21.04.2009
Findings will be presented during the 100th annual meeting of the American Association for Cancer Research in Denver

Researchers at the Translational Genomics Research Institute (TGen) may have found a way to stop the often-rapid spread of deadly brain tumors.

A gene with the playful-sounding name NHERF-1 may be a serious target for drugs that could prevent malignant tumors from rapidly multiplying and invading other parts of the brain, according to a cover story in this month's edition of Neoplasia, an international journal of cancer research.

Cancer cell movement and rapid division are key characteristics of malignant brain tumors known as glioblastoma multiforme, or GBM.

Dr. Michael Berens, Director of TGen's Cancer and Cell Biology Division, said the recent findings are a major step toward devising a treatment for GBM, which because of its ability to rapidly grow within the brain often means patients have little time to survive.

"Controlling the actions of tumor cells by regulating NHERF-1 implicates it as a possible therapeutic target for treating brain cancer," said Dr. Kerri Kislin, a scientist in TGen's Cancer and Cell Biology Division.

"Our findings suggest a novel mechanism defining NHERF-1 as a 'molecular switch' that regulates the GBM tumor cell's ability to migrate or divide,'' said Dr. Kislin, the scientific paper's lead author.

Dr. Berens, the paper's senior author, said the advances made by TGen not only confirm NHERF-1 as a gene associated with brain tumors, but also pinpoint it as a possible cause for their rapid growth and spread of GBM.

"Dr. Kislin's work has meant a fast maturation of NHERF-1 from a candidate gene associated with glioma invasion to positioning it as having a verified role in contributing to the malignant behavior of the disease," Dr. Berens said.

TGen scientists are scheduled to present their findings at the 100th annual meeting of the American Association for Cancer Research, April 18-22 in Denver.

Glioblastomas are essentially incurable tumors, in part, because there is no way to remove them surgically and ensure that all of the invading tumor cells are gone, even when surgery is followed by radiation treatments and conventional anti-cancer drugs.

"A chemotherapeutic treatment which targets these migrating cells would therefore have significant ramifications on patient survival," said Dr. Jennifer M. Eschbacher, a Neuropathology Fellow at Barrow Neurological Institute, who examined tumors for the study.

"As a pathologist, I examined expression of NHERF-1 under the microscope in tumor sections, including both invading edges of tumor and cellular tumor cores. We found NHERF-1 to be robustly expressed by invading tumors cells, when compared to tumor cores, suggesting that this factor plays a significant role in tumor invasion,'' Dr. Eschbacher said.

In the study, depletion of NHERF-1 stopped the migration of glioma – brain cancer – cells, she said. "These results suggest that NHERF-1 plays an important role in tumor biology, and that targeted inhibition of this factor may have significant effects on patient treatment and survival.''

About Barrow Neurological Institute

Barrow Neurological Institute of St. Joseph's Hospital and Medical Center in Phoenix, Arizona, is internationally recognized as a leader in neurological research and patient care. Barrow treats patients with a wide range of neurological conditions, including brain and spinal tumors, cerebrovascular conditions, and neuromuscular disorders. Barrow's clinicians and researchers are devoted to providing excellent patient care and finding better ways to treat neurological disorders. For more information, visit: www.thebarrow.org/index.htm.

About TGen


The Translational Genomics Research Institute (TGen) is a Phoenix-based, non-profit organization dedicated to conducting groundbreaking research with life changing results. Research at TGen is focused on helping patients with diseases such as cancer, neurological disorders and diabetes. TGen is on the cutting edge of translational research where investigators are able to unravel the genetic components of common and complex diseases. Working with collaborators in the scientific and medical communities, TGen believes it can make a substantial contribution to the efficiency and effectiveness of the translational process. For more information, visit: www.tgen.org.

Steve Yozwiak | EurekAlert!
Further information:
http://www.tgen.org

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>