Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TGen finds protein inhibitor revives chemotherapy for ovarian patients

06.07.2010
Discovery provides new hope to cancer patients with few treatment options

Investigators at the Translational Genomics Research Institute (TGen) have discovered a way that may help ovarian cancer patients who no longer respond to conventional chemotherapy.

A scientific paper that will be published in the September issue of the journal Gynecologic Oncology describes how the inhibition of a protein, CHEK1, may be an effective element to incorporate into therapies for women with ovarian cancer.

The research led by TGen's Dr. David Azorsa, a Senior Investigator, and Dr. Shilpi Arora, a Staff Scientist, found that inhibiting CHEK1 by a small molecule known as PD 407824, enabled ovarian cancer cells to be attacked again by cisplatin, a widely used platinum-based chemotherapy drug for women with ovarian cancer.

"PD 407824 is only available for laboratory research, but other drugs inhibiting CHEK1 are already used to treat patients in the clinic," said Dr. Raoul Tibes, one of the paper's senior a co-authors and an Associate Investigator in TGen's Clinical Translational Research Division.

The prognosis remains poor for patients with ovarian cancer, which kills nearly 14,600 women in the U.S. annually. The standard treatment for cancer of the ovaries, which produce human egg cells, is surgical removal of the cancer, followed by chemotherapy.

The TGen team proved their method in the research laboratory, which is very encouraging, considering that the use of protein inhibitors in combination with cisplatin, is also proving to be effective in clinical trials with cancer patients.

"The clinical relevance is high, as such novel molecular concepts — inhibiting the repair of cancer cells after treatment with chemotherapies — are in development for many different cancers," said Dr. Tibes, a medical oncologist who treats patients with advanced cancers at TGen Clinical Research Services (TCRS) at Scottsdale Healthcare.

"We actually have similar drug combinations that go after preventing cancer cells to repair themselves, in the clinic already, and we have seen early exciting results. Patients whose tumors had stopped responding to conventional chemotherapy have been made sensitive again, meaning some of these patients responded again to the chemotherapy. The importance of the paper is that it provides evidence that combinations of cisplatin and CHEK1 inhibitors may be worthwhile pursuing in patients with ovarian cancer," said Dr. Tibes.

TCRS is a partnership between TGen and Scottsdale Healthcare that enables laboratory discoveries to be quickly translated into effective therapies for patients at the Virginia G. Piper Cancer Center at Scottsdale Healthcare.

For this research, TGen investigators used cutting-edge technology to screen 572 kinases, the body's protein enzymes that affect how cells function. They discovered 55 siRNAs — strands of RNA molecules that affect the expression of genes — that to some degree enabled cisplatin to slow the growth of cancer cells.

According to the paper, one of those small molecule inhibitors, PD 407824, was especially effective in sensitizing ovarian cancer cells, SKOV3 and OVCAR3, to the growth inhibiting effects of cisplatin. PD 407824 and SB 218078 were the two small molecule inhibitors to CHEK1, that were found to sensitize pancreatic cancer cells to the chemotherapy drug gemcitabine, according to a paper published by the same group last year in the Journal of Translational Medicine.

"Our new data provide kinase targets that could be exploited to design better therapeutics for ovarian cancer patients," said Dr. David Azorsa, Head of TGen's Biological Therapeutics Lab and the senior author of the paper published in Gynecologic Oncology.

In addition, Shilpi Arora, a TGen Staff Scientist and the paper's lead author, said this data, "also demonstrate the effectiveness of high-throughput RNAi screening as a tool for identifying sensitizing targets to known and established chemotherapeutic agents."

About TGen

The Translational Genomics Research Institute (TGen) is a Phoenix, Arizona-based non-profit organization dedicated to conducting groundbreaking research with life changing results. Research at TGen is focused on helping patients with diseases such as cancer, neurological disorders and diabetes. TGen is on the cutting edge of translational research where investigators are able to unravel the genetic components of common and complex diseases. Working with collaborators in the scientific and medical communities, TGen believes it can make a substantial contribution to the efficiency and effectiveness of the translational process. TGen is affiliated with the Van Andel Research Institute in Grand Rapids, Michigan. For more information, visit: www.tgen.org.

Press Contact:
Steve Yozwiak
TGen Senior Science Writer
602-343-8704
syozwiak@tgen.org

Steve Yozwiak | EurekAlert!
Further information:
http://www.tgen.org

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>