Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TGen and ASU researchers find drug that could reduce risk of Alzheimer's

04.02.2009
Drug used in stroke patients might also improve learning and memory, TGen and ASU researchers find

A drug used to improve blood flow to the brain also could help improve learning and memory and reduce the risk of Alzheimer's disease, according to a new study released today by investigators at the Translational Genomics Research Institute (TGen) and Arizona State University.

Fasudil has been used for more than 10 years to help protect the brain in stroke patients by dilating blood vessels when blood flow is curtailed.

Now, a team of Arizona psychologists, geneticists and neuroscientists report in today's edition of the journal Behavioral Neuroscience that hydroxyfasudil, the active form of the parent drug Fasudil, improved spatial learning and working memory in middle-aged rats when negotiating a complicated maze.

The findings suggest that hydroxyfasudil may influence similar cognitive processes in humans involving the hippocampus, a part of the brain that has been shown to deteriorate in patients with age-related disorders.

"If Fasudil proves to be safe and effective in enhancing learning and memory, it could represent a viable new option for the prophylactic treatment of disorders with a cognitive decline component. This could include diseases like Alzheimer's as well as general age-related impairment. In short, it may be a new pharmaceutical weapon that could be used even before the occurrence of symptoms," said Dr. Matthew Huentelman, an Investigator in TGen's Neurogenomics Division.

Clinical trials are being explored in the areas of cognitive impairment and dementia, said Huentelman, the scientific paper's first author.

Although far from proving anything about human use of the drug, the findings supports the scientific quest for a substance that could treat progressive cognitive impairment, cushion the impact of aging, or even enhance learning and memory throughout one's life span.

"Fasudil shows great promise as a cognitive enhancer during aging,'' said Dr. Heather Bimonte-Nelson, an Assistant Professor in ASU's Department of Psychology and the paper's lead author. "The effects in our aging-animal model were robust, showing enhancements in both learning and two measures of memory. The possibility that these findings may translate to benefits to human brain health and function is very exciting."

In the study, the researchers gave daily injections of hydroxyfasudil to middle-aged (17-18 months old) male rats, starting four days before behavioral testing and continuing throughout testing. Injection made it easy to give the drug to rats, but people take it in the form of a pill.

Rats were tested on a water radial-arm maze, which assessed how well they remembered which of the radiating arms had a reward, a sign of accurate spatial learning and working memory. Rats given a high dose (0.3750 mg per kg of weight) of hydroxyfasudil successfully remembered more items of information than those given a low dose (0.1875 mg per kg). Both dosed groups performed significantly better than control-group rats given saline solution. On this same test, the high-dose group showed the best learning (fewest total errors) and best working memory (measured two different ways).

For every test of learning, the scores of the low-dose group fell between the scores of the no-dose and high-dose groups, meaning that learning and memory boosts depended on the size of the dose.

Fasudil, is used to protect the brain by dilating blood vessels when blood flow is curtailed. In the body, Fasudil breaks down into the more potent hydroxyfasudil molecule, which the authors hypothesize may alter memory by affecting the function of a gene called KIBRA. The authors recently demonstrated that KIBRA might play a role in memory in healthy young and late-middle-aged humans.

Hydroxyfasudil inhibits the activity of Rho-kinase enzymes, which have been shown to inhibit Rac, a vital protein that supports key cellular functions. The authors speculated that blocking Rho-kinase enables Rac, in turn, to activate more of an enzyme called protein kinase C-zeta, which may in turn affect the KIBRA protein.

The authors received financial support from the Evelyn F. McKnight Brain Research Foundation, the National Institute on Aging, the National Institute of Neurological Disorders and Stroke, and the state of Arizona. They maintain that they have no competing financial interests. Four of the authors hold stock in Sygnis Pharma AG, a German pharmaceutical company that owns the rights to develop this drug class as a potential memory enhancer. They stated that Sygnis was not directly involved in this study, did not fund any part of it, and did not influence the decision to study these drugs or the conclusion.

The findings appear in the February issue of Behavioral Neuroscience, which is published by the Washington, D.C.-based American Psychological Association.

Article: "Peripheral Delivery of a ROCK Inhibitor Improves Learning and Working Memory," Matthew J. Huentelman, PhD, and Dietrich A. Stephan, PhD, Translational Genomics Research Institute, Phoenix, Arizona and Arizona Alzheimer's Consortium; Joshua Talboom, BS, Arizona State University; Jason J. Corneveaux, BS, David M. Reiman, undergraduate student, and Jill D. Gerber, BS, Translational Genomics Research Institute, Phoenix, Arizona; Carol A. Barnes, PhD, Arizona Alzheimer's Consortium and University of Arizona; Gene E. Alexander, PhD, Arizona Alzheimer's Consortium and University of Arizona; Eric M. Reiman, PhD, Arizona Alzheimer's Consortium and University of Arizona; Heather A. Bimonte-Nelson, PhD, Arizona Alzheimer's Consortium and Arizona State University, Tempe, Arizona; Behavioral Neuroscience.

About TGen

The Translational Genomics Research Institute (TGen) is a non-profit organization dedicated to conducting groundbreaking research with life changing results. Research at TGen is focused on helping patients with diseases such as cancer, neurological disorders and diabetes. TGen is on the cutting edge of translational research where investigators are able to unravel the genetic components of common and complex diseases. Working with collaborators in the scientific and medical communities, TGen believes it can make a substantial contribution to the efficiency and effectiveness of the translational process. For more information, visit: www.tgen.org.

TGen Press Contact:
Steve Yozwiak
TGen Senior Science Writer
602-343-8704
syozwiak@tgen.org
Arizona State University Press Contact:
Skip Derra
(480) 965-4823
skip.derra@asu.edu
About the American Psychological Association
APA is the largest scientific and professional organization representing psychology in the United States and is the world's largest association of psychologists. APA's membership includes more than 148,000 researchers, educators, clinicians, consultants and students. Through its divisions in 54 subfields of psychology and affiliations with 60 state, territorial and Canadian provincial associations, APA works to advance psychology as a science, as a profession and as a means of promoting human welfare.
APA Press Contact:
American Psychological Association
Public Affairs Office
(202) 336-5700
public.affairs@apa.org

Steve Yozwiak | EurekAlert!
Further information:
http://www.apa.org

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>