Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The TET1 enzyme steers us through fetal development and fights cancer

14.04.2011
To ensure normal fetal development and prevent disease, it is crucial that certain genes are on or off in the right time intervals. Researchers in Professor Kristian Helin's group at BRIC and Centre for Epigenetics, University of Copenhagen, have now shown how the TET1 enzyme controls the activity of our genes. The results have just been published in the journal Nature.
Control of our genes
The complete human genetic code was mapped in 2000. However, it has become clear that the genetic code itself only in part can answer how an individual develops and is protected against disease. What is detrimental is also how our genes are controlled - what genes are on or off at certain times. This is in part regulated by specific cellular enzymes that can attach small chemical groups, methyl groups, to our DNA:

"The methyl groups can turn off the gene that lies in a stretch of DNA where it is added. TET1 is another type of enzyme that can fine tune the signals that control gene activity by changing the methyl groups which thereafter are removed," says Kristian Helin.

TET1 controls fetal development
Kristine Williams, Jesper Christensen and Marianne Terndrup Pedersen are the three key persons in the Helin laboratory at BRIC contributing with the new results:

"Our most important finding is that TET1 acts like a safe guard and prevents that methyl groups are attached to genes that needs to be active for normal growth and development of our cells. That is crucial for normal fetal development," says PhD student Kristine Williams.

Selected genes needs to be active in the stem cells of our body, before the cells are specialised to one of the more than 200 specialised cell types that exist in our body. Other genes need only to be active in specialised cell types as for example liver cells, muscle cells or nerve cells.

When cancer cells develop
The results also contribute to the understanding of what goes wrong when some cells accidently develop into cancer cells. The functions of our body are dependent on constant cellular renewal through division of the cells. A large cellular machinery ensures that our DNA is intact and copied correctly when our cells divide. This is crucial for normal development and function of the cells. In a worst case scenario, changes in the DNA, so called mutations, can result in development of cancer. Specialised genes called tumor suppressor genes are especially important for fighting cancer:

"If methyl groups are deployed to genes that are usually active in normal cells, the genes are turned off and this can be detrimental. If it happens to tumor suppressor genes, it can be a step towards cancer development as the genes no longer can protect against unintended cell growth," says Kristian Helin.

TET enzymes and blood cancers
So TET1 can fight cancers by controlling the activity and protective function of tumor suppressor genes. Our cells also contain a close relative to TET1, the TET2 enzyme, which is the most frequently mutated gene in blood cancers. The researches at BRIC has discovered that TET2 also controls gene activity by facilitating removal of methyl groups from the DNA and they are currently extending these studies to cellular models for cancer development. Results from these studies will supply insight into the mechanisms leading to blood cancers and can potentially lead to development of new therapeutics.

Original paper: "TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity", Williams et al., Nature April 13, 2011

Kristian Helin | EurekAlert!
Further information:
http://www.bric.ku.dk
http://news.ku.dk/all_news/2011/2011.4/stem_cells_cancer_bric_nature/

More articles from Life Sciences:

nachricht Inactivate vaccines faster and more effectively using electron beams
23.03.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>