Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The TET1 enzyme steers us through fetal development and fights cancer

14.04.2011
To ensure normal fetal development and prevent disease, it is crucial that certain genes are on or off in the right time intervals. Researchers in Professor Kristian Helin's group at BRIC and Centre for Epigenetics, University of Copenhagen, have now shown how the TET1 enzyme controls the activity of our genes. The results have just been published in the journal Nature.
Control of our genes
The complete human genetic code was mapped in 2000. However, it has become clear that the genetic code itself only in part can answer how an individual develops and is protected against disease. What is detrimental is also how our genes are controlled - what genes are on or off at certain times. This is in part regulated by specific cellular enzymes that can attach small chemical groups, methyl groups, to our DNA:

"The methyl groups can turn off the gene that lies in a stretch of DNA where it is added. TET1 is another type of enzyme that can fine tune the signals that control gene activity by changing the methyl groups which thereafter are removed," says Kristian Helin.

TET1 controls fetal development
Kristine Williams, Jesper Christensen and Marianne Terndrup Pedersen are the three key persons in the Helin laboratory at BRIC contributing with the new results:

"Our most important finding is that TET1 acts like a safe guard and prevents that methyl groups are attached to genes that needs to be active for normal growth and development of our cells. That is crucial for normal fetal development," says PhD student Kristine Williams.

Selected genes needs to be active in the stem cells of our body, before the cells are specialised to one of the more than 200 specialised cell types that exist in our body. Other genes need only to be active in specialised cell types as for example liver cells, muscle cells or nerve cells.

When cancer cells develop
The results also contribute to the understanding of what goes wrong when some cells accidently develop into cancer cells. The functions of our body are dependent on constant cellular renewal through division of the cells. A large cellular machinery ensures that our DNA is intact and copied correctly when our cells divide. This is crucial for normal development and function of the cells. In a worst case scenario, changes in the DNA, so called mutations, can result in development of cancer. Specialised genes called tumor suppressor genes are especially important for fighting cancer:

"If methyl groups are deployed to genes that are usually active in normal cells, the genes are turned off and this can be detrimental. If it happens to tumor suppressor genes, it can be a step towards cancer development as the genes no longer can protect against unintended cell growth," says Kristian Helin.

TET enzymes and blood cancers
So TET1 can fight cancers by controlling the activity and protective function of tumor suppressor genes. Our cells also contain a close relative to TET1, the TET2 enzyme, which is the most frequently mutated gene in blood cancers. The researches at BRIC has discovered that TET2 also controls gene activity by facilitating removal of methyl groups from the DNA and they are currently extending these studies to cellular models for cancer development. Results from these studies will supply insight into the mechanisms leading to blood cancers and can potentially lead to development of new therapeutics.

Original paper: "TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity", Williams et al., Nature April 13, 2011

Kristian Helin | EurekAlert!
Further information:
http://www.bric.ku.dk
http://news.ku.dk/all_news/2011/2011.4/stem_cells_cancer_bric_nature/

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA examines newly formed Tropical Depression 3W in 3-D

26.04.2017 | Earth Sciences

New High-Performance Center Translational Medical Engineering

26.04.2017 | Health and Medicine

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>