Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Tests show bright future for gadonanotubes in stem cell tracking

Gadonanotubes (GNTs) developed at Rice University are beginning to show positive results in a study funded by a federal stimulus grant through the National Institutes of Health (NIH) last year.

The study has determined GNTs are effective in helping doctors track stems cells through the body by making them 40 times better than standard contrast agents used in magnetic resonance imaging. Contrast agents help doctors spot signs of disease or damage in MR images.

Researchers at Rice and the Texas Heart Institute at St. Luke's Episcopal Hospital in Houston reported in the journal Biomaterials that mesenchymal stem cells drawn from pig bone marrow labeled with GNTs are easily spotted under MRI. The technique holds promise for tracking the progress of tagged cells as they travel through a patient's body.

Ultimately, the team hopes the magnetic properties of tagged stem cells will allow doctors to manipulate them in vivo and direct cells to specific locations -- in the heart, for instance -- where they can heal damaged tissue.

GNTs are carbon nanotubes that contain gadolinium, an element commonly used in designing contrast elements for use in MRI. Though toxic, gadolinium is chelated, or chemically bound, which makes it safer for injection into the body. But clinical agents like the gadolinium-based Magnevist cannot enter cells.

However, GNTs can. Invented in the lab of Rice chemistry professor Lon Wilson in 2005, the nanotubes sequester bundles of gadolinium ions, which enhance contrast in MRIs but cannot escape their carbon cages. This makes them biologically inert and safe for tagging cells from within.

The team found GNTs did not affect the stem cells' ability to differentiate into other types of cells or to self-renew, though work continues to characterize their ability to adhere to cell scaffolds under various conditions.

Lesa Tran, a fourth-year graduate student in Wilson's lab, was the primary author of the paper, and Wilson was corresponding author. Co-authors were Rice graduate student Ramkumar Krishnamurthy; Raja Muthupillai, a senior physicist at St. Luke's; and of the Texas Heart Institute: Maria da Graça Cabreira-Hansen, a research scientist; James Willerson, president and medical director; and Emerson Perin, medical director of the Stem Cell Center.

Primary funding for the project came from the $1 million NIH Challenge Grant, with additional funding by the National Science Foundation and the Robert A. Welch Foundation.

Read the abstract here:

Download artwork here:

Caption: Dark spots are aggregates of gadonanotubes (GNTs) in the cytoplasm of a mesenchymal stem cell. Tests show GNTs are highly effective for tagging and tracking stem cells through magnetic resonance imaging. (Credit: Lesa Tran/Rice University)

Located in Houston, Rice University is consistently ranked one of America's best teaching and research universities. Known for its "unconventional wisdom," Rice is distinguished by its: size -- 3,279 undergraduates and 2,277 graduate students; selectivity -- 12 applicants for each place in the freshman class; resources -- an undergraduate student-to-faculty ratio of 5-to-1; sixth largest endowment per student among American private research universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work.

David Ruth | EurekAlert!
Further information:

Further reports about: GNTs MRI magnetic resonance magnetic resonance imaging stem cells

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>