Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New test can detect both genetic and chromosomal abnormalities in embryos

02.07.2009
One-step screening for both genetic and chromosomal abnormalities has come a stage closer as scientists announced that an embryo test they have been developing has successfully screened cells taken from spare embryos that were known to have cystic fibrosis.

They told a news briefing at the 25th annual meeting of the European Society of Human Reproduction and Embryology in Amsterdam today (Tuesday) that, as a result, they would be able to offer clinical trials to couples seeking fertility treatment later this year.

The researchers based in the USA and the UK have been able to prove that the technique, known as genome-wide karyomapping, was capable of not only detecting diseases caused by a specific gene mutation, in this case cystic fibrosis, but that it was also capable of detecting aneuploidy (an abnormal number of any of the 23 pairs of chromosome) at the same time. This is the first time they have been able to demonstrate that the test can work in cells taken from embryos that have already been diagnosed with the cystic fibrosis gene mutation using conventional preimplantation genetic diagnosis (PGD).

Gary Harton, PGD scientific director of the Genetics & IVF Institute in Fairfax, Virginia (USA) told a news briefing: "Karyomapping is a universal method for analysing the inheritance of genetic defects in the preimplantation embryo without any prior patient or disease specific test development, which often delays patient treatment. For the first time, the inheritance of both single gene defects and chromosomal abnormalities can be detected simultaneously at the single cell level. Unlike other methods, this is achieved entirely by analysing the DNA sequence at over 300,000 locations genome-wide in parents and appropriate family members, often children already affected by a disease, and comparing their sequence with that inherited by the embryo. This can be achieved very rapidly using current microchip technology known as microarray."

With karyomapping it is not necessary to know the exact DNA mutation that is being sought; the scientists just need to take the relevant chunk of DNA from the parent that carries the mutation somewhere along its length, and if it matches a chunk of DNA from the embryo, then they know the embryo has inherited the mutation. As karyomapping involves analysing chromosomes, it also detects the existence of aneuploidy at the same time.

"The range of applications is broad and includes single gene defects, abnormal chromosome number, structural chromosome abnormalities and HLA [human leukocyte antigen] matching in 'saviour sibling' cases," said Mr Harton.

Karyomapping was developed by Professor Alan Handyside of the London Bridge Fertility Gynaecology and Genetics Centre in London (UK), and Mr Harton has been providing samples and DNA information in order to test the method and validate it for use in the clinic.

"The hope is that clinicians will be able to test embryos for specific genetic diseases and know that, with one test, they are transferring chromosomally normal embryos. This will be a step forward from current technology that is mostly limited to choosing one test or the other," explained Prof Handyside.

Karyomapping would also be quicker and cheaper. Currently, developing a PGD test for a single gene defect can take weeks or months, as scientists have to identify the exact patient or disease-specific genetic mutation first before screening for it, which is labour-intensive and costly. By contrast, karyomapping can be carried out without such extended pre-test development; at present, it takes about three days, but Mr Harton and his colleagues believe this could be reduced to 18-24 hours.

In this most recent stage of their research they examined cells from five embryos that had been donated for medical research by a couple who had received successful fertility treatment, including PGD for cystic fibrosis. The embryos had developed to the blastocyst stage, which is about five days after fertilisation. Conventional PGD had already identified which embryos were unaffected, affected or were carriers of the disease. Karyomapping of cells from the donated embryos confirmed these diagnoses, but, in addition, it was able to identify which parent carried the affected chunk of DNA. Karyomapping also revealed two aneuploidies in two embryos, which had not been detected by the earlier PGD.

Mr Harton said: "This demonstrates that karyomapping, following genome-wide analysis of a single cell biopsied from embryos at the blastocyst stage, can provide highly accurate analysis for cystic fibrosis, combined with the detection of chromosomal aneuploidy. Now that vitrification [an improved method of embryo freezing] has improved embryo survival after thawing, it should be possible to vitrify embryos at the blastocyst stage, either before or after biopsy, and analyse the embryos for virtually any genetic disease and screen for aneuploidy of all 23 pairs of chromosomes simultaneously. This approach could make PGD by karyomapping less expensive than conventional single disease PGD because fewer embryos will be biopsied, more embryos will be chromosomally normal following growth to the blastocyst stage, and there is no need to custom develop tests for each disease or couple interested in PGD."

Prof Handyside concluded: "These tests have helped us to learn everything we can before we start to treat actual patients. I am confident that we will be offering a clinical trial to patients using karyomapping some time this year."

Mary Rice | EurekAlert!
Further information:
http://www.eshre.com

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>