Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New test can detect both genetic and chromosomal abnormalities in embryos

02.07.2009
One-step screening for both genetic and chromosomal abnormalities has come a stage closer as scientists announced that an embryo test they have been developing has successfully screened cells taken from spare embryos that were known to have cystic fibrosis.

They told a news briefing at the 25th annual meeting of the European Society of Human Reproduction and Embryology in Amsterdam today (Tuesday) that, as a result, they would be able to offer clinical trials to couples seeking fertility treatment later this year.

The researchers based in the USA and the UK have been able to prove that the technique, known as genome-wide karyomapping, was capable of not only detecting diseases caused by a specific gene mutation, in this case cystic fibrosis, but that it was also capable of detecting aneuploidy (an abnormal number of any of the 23 pairs of chromosome) at the same time. This is the first time they have been able to demonstrate that the test can work in cells taken from embryos that have already been diagnosed with the cystic fibrosis gene mutation using conventional preimplantation genetic diagnosis (PGD).

Gary Harton, PGD scientific director of the Genetics & IVF Institute in Fairfax, Virginia (USA) told a news briefing: "Karyomapping is a universal method for analysing the inheritance of genetic defects in the preimplantation embryo without any prior patient or disease specific test development, which often delays patient treatment. For the first time, the inheritance of both single gene defects and chromosomal abnormalities can be detected simultaneously at the single cell level. Unlike other methods, this is achieved entirely by analysing the DNA sequence at over 300,000 locations genome-wide in parents and appropriate family members, often children already affected by a disease, and comparing their sequence with that inherited by the embryo. This can be achieved very rapidly using current microchip technology known as microarray."

With karyomapping it is not necessary to know the exact DNA mutation that is being sought; the scientists just need to take the relevant chunk of DNA from the parent that carries the mutation somewhere along its length, and if it matches a chunk of DNA from the embryo, then they know the embryo has inherited the mutation. As karyomapping involves analysing chromosomes, it also detects the existence of aneuploidy at the same time.

"The range of applications is broad and includes single gene defects, abnormal chromosome number, structural chromosome abnormalities and HLA [human leukocyte antigen] matching in 'saviour sibling' cases," said Mr Harton.

Karyomapping was developed by Professor Alan Handyside of the London Bridge Fertility Gynaecology and Genetics Centre in London (UK), and Mr Harton has been providing samples and DNA information in order to test the method and validate it for use in the clinic.

"The hope is that clinicians will be able to test embryos for specific genetic diseases and know that, with one test, they are transferring chromosomally normal embryos. This will be a step forward from current technology that is mostly limited to choosing one test or the other," explained Prof Handyside.

Karyomapping would also be quicker and cheaper. Currently, developing a PGD test for a single gene defect can take weeks or months, as scientists have to identify the exact patient or disease-specific genetic mutation first before screening for it, which is labour-intensive and costly. By contrast, karyomapping can be carried out without such extended pre-test development; at present, it takes about three days, but Mr Harton and his colleagues believe this could be reduced to 18-24 hours.

In this most recent stage of their research they examined cells from five embryos that had been donated for medical research by a couple who had received successful fertility treatment, including PGD for cystic fibrosis. The embryos had developed to the blastocyst stage, which is about five days after fertilisation. Conventional PGD had already identified which embryos were unaffected, affected or were carriers of the disease. Karyomapping of cells from the donated embryos confirmed these diagnoses, but, in addition, it was able to identify which parent carried the affected chunk of DNA. Karyomapping also revealed two aneuploidies in two embryos, which had not been detected by the earlier PGD.

Mr Harton said: "This demonstrates that karyomapping, following genome-wide analysis of a single cell biopsied from embryos at the blastocyst stage, can provide highly accurate analysis for cystic fibrosis, combined with the detection of chromosomal aneuploidy. Now that vitrification [an improved method of embryo freezing] has improved embryo survival after thawing, it should be possible to vitrify embryos at the blastocyst stage, either before or after biopsy, and analyse the embryos for virtually any genetic disease and screen for aneuploidy of all 23 pairs of chromosomes simultaneously. This approach could make PGD by karyomapping less expensive than conventional single disease PGD because fewer embryos will be biopsied, more embryos will be chromosomally normal following growth to the blastocyst stage, and there is no need to custom develop tests for each disease or couple interested in PGD."

Prof Handyside concluded: "These tests have helped us to learn everything we can before we start to treat actual patients. I am confident that we will be offering a clinical trial to patients using karyomapping some time this year."

Mary Rice | EurekAlert!
Further information:
http://www.eshre.com

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>