Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technology Targets Genetic Disorders Linked to X Chromosome

19.10.2011
Geneticists at Emory University School of Medicine have demonstrated a method that enables the routine amplification of all the genes on the X chromosome. The technology allows the rapid and highly accurate sequencing and identification of novel genetic variants affecting X chromosome genes.

The method, developed in cooperation with RainDance Technologies, is described in the Oct. 2011 issue of Genomics. Senior author Michael Zwick, PhD, assistant professor of human genetics at Emory University School of Medicine, is using the method to identify genetic variants that contribute to autism spectrum disorders.

Because the X chromosome is a hotspot for genes that are suspected of contributing to autism and intellectual disability, the Emory team’s finding could speed new discoveries and eventually make routine clinical diagnosis of autism and intellectual disability easier.

“This technology has the potential to be a valuable tool for genetic researchers across a wide variety of applications,” Zwick says. “Our data shows that it can support the routine sequencing of the exons of the human X chromosome in a uniform, accurate and comprehensive way.”

The team’s sequencing method does not read all the letters of the genetic code in the X chromosome from beginning to end. Instead, it targets more than 800 “exons”: all the genes that get read out and made into RNA.

A direct comparison with another method of target selection called oligonucleotide capture showed that the team’s technique needed between three and seven times fewer sequence reads to achieve high levels of accuracy and completeness, potentially meaning lower costs.

The Emory team’s experiments showed that their technique could read 97 percent of targeted sequences at high depth with an accuracy of 99.5 percent. The team used data from the HapMap Project, a partnership coordinated by the Human Genome Research Institute, as a reference standard for genetic sequence variation.Sex is determined by having two X chromosomes (female) or an X and a Y chromosome (male). Because males have only a single X chromosome, a mutation in a gene on the X chromosome is more likely to affect a male than a female because males lack another copy of the same gene to compensate. This pattern of inheritance can contribute to disorders that disproportionately affect males, such as autism spectrum disorder or intellectual disability.

Modern DNA sequencing techniques use the polymerase chain reaction (PCR) to isolate and “amplify” the target DNA scientists want to read. RainDance Technologies has developed a single molecule microdroplet-based technology that enables scientists to target up to 20,000 genomic loci in a single sample, saving time, space and cost while increasing reliability and ease of use. The reactions take place in millions of self-contained droplets, allowing each to amplify a different piece of DNA within an emulsion.

Reference:

K. Mondal, A.C. Shetty, V. Patel, D.J. Cutler and M.E. Zwick. Targeted sequencing of the human X chromosome exome. Genomics Vol. 98, Issue 4, pp. 260-265 (Oct. 2011).

Writer: Quinn Eastman

The Robert W. Woodruff Health Sciences Center of Emory University is an academic health science and service center focused on missions of teaching, research, health care and public service.

Learn more about Emory’s health sciences:
Blog: http://emoryhealthblog.com
Twitter: @emoryhealthsci
Web: http://emoryhealthsciences.org

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

More articles from Life Sciences:

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>