Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technology Targets Genetic Disorders Linked to X Chromosome

19.10.2011
Geneticists at Emory University School of Medicine have demonstrated a method that enables the routine amplification of all the genes on the X chromosome. The technology allows the rapid and highly accurate sequencing and identification of novel genetic variants affecting X chromosome genes.

The method, developed in cooperation with RainDance Technologies, is described in the Oct. 2011 issue of Genomics. Senior author Michael Zwick, PhD, assistant professor of human genetics at Emory University School of Medicine, is using the method to identify genetic variants that contribute to autism spectrum disorders.

Because the X chromosome is a hotspot for genes that are suspected of contributing to autism and intellectual disability, the Emory team’s finding could speed new discoveries and eventually make routine clinical diagnosis of autism and intellectual disability easier.

“This technology has the potential to be a valuable tool for genetic researchers across a wide variety of applications,” Zwick says. “Our data shows that it can support the routine sequencing of the exons of the human X chromosome in a uniform, accurate and comprehensive way.”

The team’s sequencing method does not read all the letters of the genetic code in the X chromosome from beginning to end. Instead, it targets more than 800 “exons”: all the genes that get read out and made into RNA.

A direct comparison with another method of target selection called oligonucleotide capture showed that the team’s technique needed between three and seven times fewer sequence reads to achieve high levels of accuracy and completeness, potentially meaning lower costs.

The Emory team’s experiments showed that their technique could read 97 percent of targeted sequences at high depth with an accuracy of 99.5 percent. The team used data from the HapMap Project, a partnership coordinated by the Human Genome Research Institute, as a reference standard for genetic sequence variation.Sex is determined by having two X chromosomes (female) or an X and a Y chromosome (male). Because males have only a single X chromosome, a mutation in a gene on the X chromosome is more likely to affect a male than a female because males lack another copy of the same gene to compensate. This pattern of inheritance can contribute to disorders that disproportionately affect males, such as autism spectrum disorder or intellectual disability.

Modern DNA sequencing techniques use the polymerase chain reaction (PCR) to isolate and “amplify” the target DNA scientists want to read. RainDance Technologies has developed a single molecule microdroplet-based technology that enables scientists to target up to 20,000 genomic loci in a single sample, saving time, space and cost while increasing reliability and ease of use. The reactions take place in millions of self-contained droplets, allowing each to amplify a different piece of DNA within an emulsion.

Reference:

K. Mondal, A.C. Shetty, V. Patel, D.J. Cutler and M.E. Zwick. Targeted sequencing of the human X chromosome exome. Genomics Vol. 98, Issue 4, pp. 260-265 (Oct. 2011).

Writer: Quinn Eastman

The Robert W. Woodruff Health Sciences Center of Emory University is an academic health science and service center focused on missions of teaching, research, health care and public service.

Learn more about Emory’s health sciences:
Blog: http://emoryhealthblog.com
Twitter: @emoryhealthsci
Web: http://emoryhealthsciences.org

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>