Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technology facilitates studies of brain cells in stroke

22.03.2010
A mini-laboratory that makes it possible, among other things, to study how brain cells in stroke patients are affected by lack of oxygen is being developed by a research team at Luleå University of Technology (LTU) in Sweden.

Lab on a Chip is what the scientists are calling their mini-lab, which is expected to facilitate studies of all sorts of biological cells and how they are affected by different medicines, chemical substances, etc.

The researchers in medical technology at Luleå University of Technology have wind in their sails. New technological solutions are needed to help meet Europe's rapidly growing needs for healthcare.

The development of the mini-lab Lab on a Chip is one of 22 projects being pursued within the framework of the Center for Medical Technology and Physics, CMTF, a joint initiative involving Luleå University of Technology and Umeå University.

Professor Olof Lindahl and his research associate Kerstin Ramser in Luleå are developing a so-called micro-flow system to study, for instance, how the vital oxygen-bearing protein neuroglobin, which is found in brain cells, is affected by the lack of oxygen that occurs in stroke.

Neuroglobin was discovered in 2000 by a German research team and occurs primarily in brain cells. Overproduction of neuroglobin in the brains of mice has been shown to mitigate the consequences of damage relating to oxygen deficiency in stroke.

"Today there are no really good methods for studying how individual cells signal under oxygen-poor conditions," says Kerstin Ramser. "One advantage of the new technology we use is that it is now possible to select and isolate specific cells in a controlled environment."

The Lab on a Chip that the Luleå researchers have produced measures 2 X 6 cm and fits on the specimen glass of a microscope. This makes it possible to reduce the size of the sample, in blood analysis, for example.

"What we are studying is the electrophysiological activity of brain cells, that is, their capacity to communicate with other cells under oxygen-poor and entirely oxygen-free conditions," says Kerstin Ramser.

To be able to study how brain cells are affected by stroke, researchers pump fluids with varying levels of oxygen content into channels in the mini-lab. The channels are extremely small, corresponding to one third of the thickness of a hair. Once the fluid has been pumped into the system, the cell sample is introduced. With the help of optical tweezers, which use laser beams to capture and move cells, the scientists can select and isolate a specific cell in order to study how it behaves in various oxygen mixtures.

"Enhance the quality of care today is largely a matter of developing new technologies that help us advance our knowledge of the major diseases, such as cancer, stroke, or Parkinson's," says Kerstin Ramser.

There are some 8 professors and 20-25 researchers in the field of medical technology at Luleå University of Technology today. Much of the medical technology research conducted at Luleå University of Technology is done together with researchers from Umeå University in an interdisciplinary collaboration where Luleå provides the technological expertise and Umeå the medical competence.

The research center CMTF involves not only the two universities but also the Norrbotten and Västerbotten County Councils, companies, and researchers from Sweden, Japan, Germany, Spain, and other countries. They develop products and services for more secure healthcare.

Their work is partly funded by EU Goal2. A researcher-owned company for developing businesses, financed by the County Administrations, Innovation Bridge North, LTU Holding, Uminova Innovation, and the parties involved, is tied to the Center.

Contact: Professor Olof Lindahl, mobile phone: +46 (0)70 6060 04 14, olof.lindahl@ltu.se or Associate Professor Kerstin Ramser, phone: +46 (0)920 - 49 16 48, kerstin.ramser@ltu.se

Pressofficer Åsa Svedjeholm; Asa.Svedjeholm@ltu.se; +46-703 39 16 28

Åsa Svedjeholm | idw
Further information:
http://www.vr.se

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>