Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technology facilitates studies of brain cells in stroke

22.03.2010
A mini-laboratory that makes it possible, among other things, to study how brain cells in stroke patients are affected by lack of oxygen is being developed by a research team at Luleå University of Technology (LTU) in Sweden.

Lab on a Chip is what the scientists are calling their mini-lab, which is expected to facilitate studies of all sorts of biological cells and how they are affected by different medicines, chemical substances, etc.

The researchers in medical technology at Luleå University of Technology have wind in their sails. New technological solutions are needed to help meet Europe's rapidly growing needs for healthcare.

The development of the mini-lab Lab on a Chip is one of 22 projects being pursued within the framework of the Center for Medical Technology and Physics, CMTF, a joint initiative involving Luleå University of Technology and Umeå University.

Professor Olof Lindahl and his research associate Kerstin Ramser in Luleå are developing a so-called micro-flow system to study, for instance, how the vital oxygen-bearing protein neuroglobin, which is found in brain cells, is affected by the lack of oxygen that occurs in stroke.

Neuroglobin was discovered in 2000 by a German research team and occurs primarily in brain cells. Overproduction of neuroglobin in the brains of mice has been shown to mitigate the consequences of damage relating to oxygen deficiency in stroke.

"Today there are no really good methods for studying how individual cells signal under oxygen-poor conditions," says Kerstin Ramser. "One advantage of the new technology we use is that it is now possible to select and isolate specific cells in a controlled environment."

The Lab on a Chip that the Luleå researchers have produced measures 2 X 6 cm and fits on the specimen glass of a microscope. This makes it possible to reduce the size of the sample, in blood analysis, for example.

"What we are studying is the electrophysiological activity of brain cells, that is, their capacity to communicate with other cells under oxygen-poor and entirely oxygen-free conditions," says Kerstin Ramser.

To be able to study how brain cells are affected by stroke, researchers pump fluids with varying levels of oxygen content into channels in the mini-lab. The channels are extremely small, corresponding to one third of the thickness of a hair. Once the fluid has been pumped into the system, the cell sample is introduced. With the help of optical tweezers, which use laser beams to capture and move cells, the scientists can select and isolate a specific cell in order to study how it behaves in various oxygen mixtures.

"Enhance the quality of care today is largely a matter of developing new technologies that help us advance our knowledge of the major diseases, such as cancer, stroke, or Parkinson's," says Kerstin Ramser.

There are some 8 professors and 20-25 researchers in the field of medical technology at Luleå University of Technology today. Much of the medical technology research conducted at Luleå University of Technology is done together with researchers from Umeå University in an interdisciplinary collaboration where Luleå provides the technological expertise and Umeå the medical competence.

The research center CMTF involves not only the two universities but also the Norrbotten and Västerbotten County Councils, companies, and researchers from Sweden, Japan, Germany, Spain, and other countries. They develop products and services for more secure healthcare.

Their work is partly funded by EU Goal2. A researcher-owned company for developing businesses, financed by the County Administrations, Innovation Bridge North, LTU Holding, Uminova Innovation, and the parties involved, is tied to the Center.

Contact: Professor Olof Lindahl, mobile phone: +46 (0)70 6060 04 14, olof.lindahl@ltu.se or Associate Professor Kerstin Ramser, phone: +46 (0)920 - 49 16 48, kerstin.ramser@ltu.se

Pressofficer Åsa Svedjeholm; Asa.Svedjeholm@ltu.se; +46-703 39 16 28

Åsa Svedjeholm | idw
Further information:
http://www.vr.se

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>