Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technique tricks bacteria into generating their own vaccine

25.02.2009
Scientists have developed a way to manipulate bacteria so they will grow mutant sugar molecules on their cell surfaces that could be used against them as the key component in potent vaccines.

Any resulting vaccines, if proven safe, could be developed more quickly, easily and cheaply than many currently available vaccines used to prevent bacterial illnesses.

Most vaccines against bacteria are created with polysaccharides, or long strings of sugars found on the surface of bacterial cells. The most common way to develop these vaccines is to remove sugars from the cell surface and link them to proteins to give them more power to kill bacteria.

Polysaccharides alone typically do not generate a strong enough antibody response needed to kill bacteria. But this new technique would provide an easy approach to make a small alteration to the sugar structure and produce the polysaccharide by simple fermentation.

“We are showing for the first time that you don’t have to use complicated chemical reactions to make the alteration to the polysaccharide,” said Peng George Wang, Ohio Eminent Scholar and professor of biochemistry and chemistry at Ohio State University and senior author of the study. “All we need to do is ferment the bacteria, and then the polysaccharides that grow on the surface of the cell already incorporate the modification.”

The research is scheduled to appear in the online early edition of the Proceedings of the National Academy of Sciences.

In vaccines, polysaccharides linked with carrier proteins are injected into the body. That sets off a process that causes the release of antibodies that recognize the sugars as an unwanted foreign body. The antibodies then remain dormant but ready to attack if they ever see the same polysaccharides again – which would be a signal that bacteria have infected the body.

Polysaccharides are chains of sugars, or monosaccharides, and they are targeted for vaccine development because they are the portion of bacterial cells that interact with the rest of the body.

Escherichia coli was used as a model for the study. Wang and colleagues used one of the existing monosaccharides present on the E. coli cell surface polysaccharides, called fucose, to generate this new modification. They manipulated the structure of the fucose to create 10 different analogs, or forms of the sugar in which just one small component is changed.

The scientists then manually introduced these altered forms of fucose to a solution in which bacterial cells were growing, and the bacterial cells absorbed the altered fucose as they would normal forms of the sugar. The presence of these altered forms of fucose then altered the properties of the polysaccharides that grew on the surface of the cells.

“This way, we don’t have to do anything to modify the polysaccharides. We let bacteria do it for us,” Wang said.

“Bacteria grow lots of polysaccharides – it’s similar to the way humans grow hair. But for a vaccine, you need to make the molecules more active, or energetic,” he said. “In our method, we feed the bacteria these chemicals while they are growing, and those chemicals end up in the polysaccharides and that makes them more immunogenic. That’s the technology.”

Wang said the approach is likely to be applicable to many different kinds of bacteria. But each type of pathogen must be tested individually with the alteration of sugars unique to its surface.

“If you want to prevent one type of bacteria, you have to find something very unique for this bacteria because different microbes have different characteristics,” he said. “You have to find the oddest thing on the cell surface. It has to be on surface because what the body sees first is the surface.”

His lab will next be testing the method’s effectiveness on the pneumococcus bacteria under an exploratory $100,000 grant from the Bill & Melinda Gates Foundation. The current vaccine to prevent pneumonia in babies and the elderly combines 23 strains of bacteria, making it complex and expensive to produce. Each injection costs about $50 in the United States. A less expensive way to develop the vaccine would increase its availability in the developing world, Wang said.

This published research was supported by an endowed Ohio Eminent Scholar Professorship on Macromolecular Structure and Function in the Department of Biochemistry at Ohio State.

Co-authors of the work are Wen Yi, a recipient of a Ph.D. from the Ohio State Biochemistry Program who is now at the California Institute of Technology; Xi Chen of the University of California, Davis; Jianjun Li of the Institute for Biological Sciences at National Research Council of Canada; Chengfeng Xia, Guangyan Zhou and Wenpeng Zhang of Ohio State’s Departments of Biochemistry and Chemistry; Yanhong Li of the University of California, Davis; Xianwei Liu of Shandong University, China; and Wei Zhao of Nankai University, China.

Contact: Peng George Wang, (614) 292-9884; wang.892@osu.edu
(Wang will be traveling the week of Feb. 23; e-mail is the best way to contact him.)

Written by Emily Caldwell, (614) 292-8310; caldwell.151@osu.edu

Peng George Wang | EurekAlert!
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>