Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technique allows researchers to identify key maize genes for increased yield

12.01.2011
Scientists have identified the genes related to leaf angle in corn (maize) – a key trait for planting crops closer together, which has led to an eight-fold increase in yield since the early 1900s. (Nature Genetics, Jan. 9, 2011.)

The study, led by researchers from Cornell and the U.S. Department of Agriculture – Agricultural Research Service (USDA-ARS) at Cornell and North Carolina State University, is the first to relate genetic variation across the entire maize genome to traits in a genomewide association study. The researchers have so far located 1.6 million sites on the maize genome where one individual may vary from another, and they used those sites to identify the genes related to changes in leaf angle that have allowed greater crop density.

Yield increases have mostly resulted from adaptations made by breeders to maize so crops can be planted closer together. Along with changes in roots and nutrient uptake that also play roles in increased crop densities, the leaves of maize crop plants have become more upright to maintain access to sunlight in crowded plots.

The team of researchers found that natural mutations in genes that affect ligules – the first thick part of the leaf where it wraps around the stalk – contributed to more upright leaves. Also, the changes in leaf angle result from many small genetic effects added together; while leaf angles may vary from one maize variety to another by up to 80 degrees, the biggest effect from a single gene was only 1.5 degrees.

"Although each gene and variant has a small effect, we can make very accurate predictions," said Ed Buckler, the paper's senior author, a USDA-ARS research geneticist in Cornell's Institute for Genomic Diversity and a Cornell adjunct associate professor of plant breeding and genetics. Lead authors include Feng Tian, a postdoctoral researcher in Buckler's lab, and Peter Bradbury, a computational biologist with the USDA-ARS in Ithaca.

The genomewide association study method allows researchers to examine a corn plant's genome and predict a trait with 80 percent accuracy. This would be analogous to predicting the height of a person by sequencing and analyzing their genes, or genotyping a seed to predict traits of the plant, said Buckler. The methodology may be applied to other traits, crops and species, including animals.

"This method will allow the intelligent design of maize around the world for high-density planting, higher yields and disease resistance," said Buckler.

In this study, the researchers had the advantage of making controlled crosses in maize plants to capture a great deal of genetic variation in the population of maize they studied, something that cannot be done when studying human genetics. The study offers proof that variation in traits is the sum of many small effects in genes, a hypothesis that has also been proposed by some human geneticists.

Also in the Jan. 9 online issue of Nature Genetics, a companion paper by the same research team, but led by those at USDA-ARS and North Carolina State University, used the same technique to identify key genes associated with southern leaf blight in maize. The study was funded by the National Science Foundation and USDA-ARS. James Holland, a researcher at USDA-ARS and North Carolina State University, is also a senior co-author of the study.

Blaine Friedlander | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>