Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technique allows researchers to identify key maize genes for increased yield

12.01.2011
Scientists have identified the genes related to leaf angle in corn (maize) – a key trait for planting crops closer together, which has led to an eight-fold increase in yield since the early 1900s. (Nature Genetics, Jan. 9, 2011.)

The study, led by researchers from Cornell and the U.S. Department of Agriculture – Agricultural Research Service (USDA-ARS) at Cornell and North Carolina State University, is the first to relate genetic variation across the entire maize genome to traits in a genomewide association study. The researchers have so far located 1.6 million sites on the maize genome where one individual may vary from another, and they used those sites to identify the genes related to changes in leaf angle that have allowed greater crop density.

Yield increases have mostly resulted from adaptations made by breeders to maize so crops can be planted closer together. Along with changes in roots and nutrient uptake that also play roles in increased crop densities, the leaves of maize crop plants have become more upright to maintain access to sunlight in crowded plots.

The team of researchers found that natural mutations in genes that affect ligules – the first thick part of the leaf where it wraps around the stalk – contributed to more upright leaves. Also, the changes in leaf angle result from many small genetic effects added together; while leaf angles may vary from one maize variety to another by up to 80 degrees, the biggest effect from a single gene was only 1.5 degrees.

"Although each gene and variant has a small effect, we can make very accurate predictions," said Ed Buckler, the paper's senior author, a USDA-ARS research geneticist in Cornell's Institute for Genomic Diversity and a Cornell adjunct associate professor of plant breeding and genetics. Lead authors include Feng Tian, a postdoctoral researcher in Buckler's lab, and Peter Bradbury, a computational biologist with the USDA-ARS in Ithaca.

The genomewide association study method allows researchers to examine a corn plant's genome and predict a trait with 80 percent accuracy. This would be analogous to predicting the height of a person by sequencing and analyzing their genes, or genotyping a seed to predict traits of the plant, said Buckler. The methodology may be applied to other traits, crops and species, including animals.

"This method will allow the intelligent design of maize around the world for high-density planting, higher yields and disease resistance," said Buckler.

In this study, the researchers had the advantage of making controlled crosses in maize plants to capture a great deal of genetic variation in the population of maize they studied, something that cannot be done when studying human genetics. The study offers proof that variation in traits is the sum of many small effects in genes, a hypothesis that has also been proposed by some human geneticists.

Also in the Jan. 9 online issue of Nature Genetics, a companion paper by the same research team, but led by those at USDA-ARS and North Carolina State University, used the same technique to identify key genes associated with southern leaf blight in maize. The study was funded by the National Science Foundation and USDA-ARS. James Holland, a researcher at USDA-ARS and North Carolina State University, is also a senior co-author of the study.

Blaine Friedlander | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>