Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technique enables precise control of protein activity in living cells

28.06.2010
Cancer occurs when human cells move and multiply inappropriately. Within cells, a process called phosphorylation serves as an on/off switch for a number of cellular processes that can be involved in cancer, including metabolism, transcription, configuration, movement, cell death and differentiation.

This process is controlled by a group of enzymes called protein kinases that – working together and separately – modify the structure of proteins, changing them and allowing them to control cellular processes.

One of the challenges to understanding the actions and interactions of kinases within cells has been that the mechanisms scientists used to control the enzymes were not specific, often affecting more than one pathway within the cell.

In a paper published today in the journal Nature Biotechnology, Klaus Hahn, PhD, who is the Thurman Professor of Pharmacology at the University of North Carolina at Chapel Hill and a member of UNC Lineberger Comprehensive Cancer Center, describes a new technique called engineered allosteric regulation, which provides a new tool for scientists who study the interactions of proteins within living cells.

"Engineered allosteric regulation is a new method that provides precise control of kinase activity in living cells," said Hahn.

"We can now take the kinase of choice and precisely control the 'on/off' switch, thereby seeing what they are doing and how they control cell function. The technology has exciting applications in basic research, since kinases are the central regulators of almost every cellular process. The ability to precisely control the state and timing of kinase action within cells opens the door to a broad range of new scientific insights," he added.

"This ingenious method offers a powerful new approach for dissecting the diverse functions of kinases in living cells," said James Deatherage, PhD, who oversees cell biology grants at the NIH's National Institute of General Medical Sciences. "The capacity to precisely control the activity of this important class of proteins in living cells is a transformational advance in our ability to understand their roles in normal processes like cell growth and development, as well as their part in triggering diseases like cancer."

Hahn explains that the mechanism of engineered allosteric regulation can be compared to the wheels on a car. A small part of each kinase molecule is key to its action within the cell. Attaching a protein engineered by Andrei Karginov to this part of the kinase causes the molecule to vibrate, keeping it from working well enough to control the cell just as loose bolts on a car wheel will keep the vehicle from moving forward effectively.

Scientists then use a drug to bind the engineered protein, tightening up the molecule and allowing the kinase to work normally – like tightening the bolts on a car wheel.

"It's very precise. Just as you can map which switch in the circuit box in your home controls specific lights and appliances, this mechanism controls specific kinases, allowing researchers to trace their action precisely within the cell," Hahn says.

Hahn predicts that the new technique will enable faster, less expensive study of cell signaling pathways implicated in cancer as well as a large range of human diseases and disorders.

Hahn points out that this was a highly collaborative effort, made possible only by combining the skills of UNC researchers from diverse disciplines. The research team from UNC includes molecular biologist Andrei V. Karginov, PhD, Research Assistant Professor of Pharmacology, and computational biologists Feng Ding, Research Assistant Professor of Pharmacology, Pradeep Kota, a graduate student in biochemistry and biophysics, and Nikolay V. Dokholyan, PhD, Associate Professor of Biochemistry and Biophysics.

The research was supported by the National Institutes of Health (NIH R01 GM057464) and the Cell Migration Consortium of the NIH (GM64346).

Ellen de Graffenreid | EurekAlert!
Further information:
http://www.unc.edu

Further reports about: NIH cellular process living cell pharmacology signaling pathway

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Researchers devise microreactor to study formation of methane hydrate

23.08.2017 | Materials Sciences

ShAPEing the future of magnesium car parts

23.08.2017 | Automotive Engineering

New insights into the world of trypanosomes

23.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>