Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Technique enables precise control of protein activity in living cells

Cancer occurs when human cells move and multiply inappropriately. Within cells, a process called phosphorylation serves as an on/off switch for a number of cellular processes that can be involved in cancer, including metabolism, transcription, configuration, movement, cell death and differentiation.

This process is controlled by a group of enzymes called protein kinases that – working together and separately – modify the structure of proteins, changing them and allowing them to control cellular processes.

One of the challenges to understanding the actions and interactions of kinases within cells has been that the mechanisms scientists used to control the enzymes were not specific, often affecting more than one pathway within the cell.

In a paper published today in the journal Nature Biotechnology, Klaus Hahn, PhD, who is the Thurman Professor of Pharmacology at the University of North Carolina at Chapel Hill and a member of UNC Lineberger Comprehensive Cancer Center, describes a new technique called engineered allosteric regulation, which provides a new tool for scientists who study the interactions of proteins within living cells.

"Engineered allosteric regulation is a new method that provides precise control of kinase activity in living cells," said Hahn.

"We can now take the kinase of choice and precisely control the 'on/off' switch, thereby seeing what they are doing and how they control cell function. The technology has exciting applications in basic research, since kinases are the central regulators of almost every cellular process. The ability to precisely control the state and timing of kinase action within cells opens the door to a broad range of new scientific insights," he added.

"This ingenious method offers a powerful new approach for dissecting the diverse functions of kinases in living cells," said James Deatherage, PhD, who oversees cell biology grants at the NIH's National Institute of General Medical Sciences. "The capacity to precisely control the activity of this important class of proteins in living cells is a transformational advance in our ability to understand their roles in normal processes like cell growth and development, as well as their part in triggering diseases like cancer."

Hahn explains that the mechanism of engineered allosteric regulation can be compared to the wheels on a car. A small part of each kinase molecule is key to its action within the cell. Attaching a protein engineered by Andrei Karginov to this part of the kinase causes the molecule to vibrate, keeping it from working well enough to control the cell just as loose bolts on a car wheel will keep the vehicle from moving forward effectively.

Scientists then use a drug to bind the engineered protein, tightening up the molecule and allowing the kinase to work normally – like tightening the bolts on a car wheel.

"It's very precise. Just as you can map which switch in the circuit box in your home controls specific lights and appliances, this mechanism controls specific kinases, allowing researchers to trace their action precisely within the cell," Hahn says.

Hahn predicts that the new technique will enable faster, less expensive study of cell signaling pathways implicated in cancer as well as a large range of human diseases and disorders.

Hahn points out that this was a highly collaborative effort, made possible only by combining the skills of UNC researchers from diverse disciplines. The research team from UNC includes molecular biologist Andrei V. Karginov, PhD, Research Assistant Professor of Pharmacology, and computational biologists Feng Ding, Research Assistant Professor of Pharmacology, Pradeep Kota, a graduate student in biochemistry and biophysics, and Nikolay V. Dokholyan, PhD, Associate Professor of Biochemistry and Biophysics.

The research was supported by the National Institutes of Health (NIH R01 GM057464) and the Cell Migration Consortium of the NIH (GM64346).

Ellen de Graffenreid | EurekAlert!
Further information:

Further reports about: NIH cellular process living cell pharmacology signaling pathway

More articles from Life Sciences:

nachricht International team discovers novel Alzheimer's disease risk gene among Icelanders
24.10.2016 | Baylor College of Medicine

nachricht New bacteria groups, and stunning diversity, discovered underground
24.10.2016 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>