Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Team uncovers link between hormone levels and risk for metabolic disease

The work may pave the way for new therapies for obesity and diabetes

Working with a national team of researchers, a scientist from the Florida campus of The Scripps Research Institute has shown for the first time a link between low levels of a specific hormone and increased risk of metabolic disease in humans.

The study, published online ahead of print in The Journal of Clinical Endocrinology & Metabolism, focuses on the hormone adropin, which was previously identified by Scripps Research Associate Professor Andrew Butler's laboratory during an investigation of obese and insulin-resistant mice. Adropin is believed to play an important role in regulating glucose levels and fatty acid metabolism.

"The results of this clinical study suggest that low levels of adropin may be a factor increasing risk for developing metabolic disorders associated with obesity and insulin resistance, which could then lead to diseases such as type 2 diabetes," said Butler, who led the new study with Peter J. Havel, professor of molecular biosciences and nutrition at the University of California, Davis.

Approximately 47 million adults in the United States have metabolic syndrome, according to the American College of Cardiology. The National Institutes of Health defines metabolic syndrome as a group of risk factors, especially obesity and insulin resistance, that occur together and increase the risk for coronary artery disease, stroke, and type 2 diabetes.

Intriguing Results

In the new study, which involved 85 women and 45 men, Butler and his colleagues showed that obesity is associated with lower adropin levels. Lower adropin levels were also observed in individuals with a higher "metabolic syndrome risk factor" score, a score determined by measuring triglycerides, LDL cholesterol, HDL, glucose, blood pressure, and waist circumference.

The scientists also observed circulating adropin concentrations increased significantly at three and six months following gastric bypass surgery in morbidly obese patients. Interestingly, adropin levels returned to pre-surgical levels at 12 months after surgery.

Another surprising finding of the new study was that in people of normal weight, women had lower plasma adropin levels than men. In addition, obesity had a bigger negative effect on adropin levels in men. Interestingly, obesity in woman was also not associated with lower plasma adropin levels. The significance of the differences between men and woman is unknown at the moment.

"But the link between low levels of adropin and increased metabolic risk was observed in both sexes," Butler said. "The impact is there, irrespective of gender."

Adropin levels were also found in general to decrease with age—the decline was highest in those over 30 years of age. As with obesity, the aging effect appeared to be more pronounced in men.

Findings in Humans Mirror Preclinical Work

The new study is an important extension of earlier pre-clinical studies using animal models published in the July edition of Obesity. In that study, Butler and colleagues deleted the gene encoding adropin from mice. The scientists found that, while normal in appearance, adropin-deficient mice have insulin resistance and, when fed diets with a high fat content, develop a more severe impaired glucose tolerance (IGT). These findings suggest reduced insulin production and attenuated response to insulin, which are the defining features of type 2 diabetes. Importantly, mice having only one functional copy of the gene encoding adropin also exhibited increased propensity for developing impaired glucose tolerance with obesity. These findings provided important pre-clinical evidence evidence that low levels of adropin are associated with increased risk of developing type 2 diabetes.

In other studies, Butler's laboratory observed that obese mice exhibit dramatic reductions in circulating adropin levels, and that insulin resistance was reversed after injections with a synthetic form of adropin.

"The data from these studies provide strong evidence suggesting that low levels of adropin may be an indicator of risk for insulin resistance in obesity and, consequently, an increased risk for metabolic diseases, including type 2 diabetes," Butler said. "We see a lot of similarity between animal model data and the new human data—low adropin levels in humans are associated with a host of metabolic syndrome risk factors normally associated with obesity and insulin resistance."

Taken together, these studies suggest the possibility that therapeutics designed to boost the supply of adropin might be useful in fighting obesity and metabolic disease.

In addition to Butler and Havel, authors of the study, "Low Circulating Adropin Concentrations With Obesity And Aging Correlate With Risk Factors For Metabolic Disease And Increase After Gastric Bypass Surgery In Humans," include Charmaine S. Tam and Eric Ravussin of Louisiana State University, Baton Rouge; Kimber L. Stanhope and Mohamed R. Ali of the University of California, Davis; Bruce M. Wolfe of the Oregon Health Sciences University, Portland; and Majella O'Keeffe and Marie-Pierre St Onge of Columbia University.

The study was supported by the National Institutes of Health (award numbers HL061352, DK060412, HL075675, HL09133, UL1 RR024156-03, UL1 RR024146, and 1P30 DK072476-06); the American Diabetes Association; The Novo Nordisk Diabetes Innovation Award Program; the University of California, Davis Health Care Systems Award; the Irving Center for Translational Science; and the Pennington Biomedical Research Center's Nutrition Obesity Research Center program.

Eric Sauter | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>