Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team Tracking Potential New Salamander Species

18.08.2009
They've been living on a small ridge in the Blue Ridge mountains probably for centuries, but only now are they being discovered.

What may prove to be new species of salamander is being investigated in the George Washington National Forest by Washington and Lee University professor and his students.

"I think it's very exciting from a local biodiversity perspective," said David Marsh, associate professor of biology at W&L.

"Some peaks in the Blue Ridge mountains are the equivalent of the Galapagos Islands for salamanders," said Marsh. "These mountains never had glaciers, so salamanders have been up there for a very long time. Groups of salamanders probably became isolated on some of the ridgetops and went off on their own evolutionary trajectories."

Marsh and two W&L biology majors have spent the summer conducting ongoing research into a possible new species called the Sherando salamander. It lives on top of a tiny ridge 20 miles north of the University's Lexington campus. The range of the salamander appears to be about only six kilometers long and to extend three kilometers on each side.

"We want to find out if the Sherando is, in fact, a new species," said Marsh. "Where on the ridge does this new salamander begin and the other more common Red Back salamander, which lives further down the ridge, stop? How did the Sherando get on top of this one little ridge by itself? How long has it been isolated?"

W&L junior Claire Bayer and senior Andrew Sackman have spent the summer helping to answer these questions. They have been catching the salamanders, taking samples and then testing their DNA in the lab. Bayer is a Howard Hughes Medical Institute Fellow; Sackman is a R.E. Lee Research Scholar.

Although this summer's work has been primarily in the lab, the students started their research catching the salamanders in the field during a spring term class on field biology, since salamanders are most active in the spring and easier to find. Easier is a relative term.

"We flipped over rocks, turned over lots of logs, and dug through leaf litter to try and find them," said Bayer. "Sometimes we would search for two or three hours and find only one or two salamanders."

The salamanders are small "” their bodies are about four centimeters long with their tails adding another two or three centimeters. So they're hard to spot in the first place. But it's also difficult to distinguish between the Sherando and Red Back salamanders. Marsh described the Red Back as "a little brown thing with a red stripe. It's by far the most common amphibian in the eastern United States and the two species look very similar at first glance. This is one reason new species are still being discovered."

But the new species does have some differences. For example, the limbs of the Sherando salamander tend to be longer and the trunk is shorter because they have fewer ribs. Measuring those characteristics helped the students identify the new species.

Once they caught the salamanders, the students pinched off a little bit of tissue from the tail to take back to the laboratory for analysis.

As Marsh explained, classifying the salamanders based on how they look is just preliminary. The main classification is accomplished by extracting and sequencing the DNA from the samples, then comparing the Sherandos and Red Backs.

"If all the Sherandos have one sequence and all the Red Backs have a different one, then we know we have two different species," said Marsh. "But if the two species actually have some DNA in common. then that would prove they are interbreeding where their habitats overlap."

But it's not that clear cut, added Bayer, saying that it depends on your definition of species.

"Some scientists say that if they interbreed at all and have fertile offspring then they are not a new species. Others say that even if they interbreed, as long as their DNA is different, then they are a different species," she said.

So what happens if the Sherando is determined to be a new species?

Marsh said that the salamanders are found mostly on land managed by the U.S. Forest Service, and added that the Forest Service is paying for a good chunk of this work, "because they are responsible for managing all the rare species on Forest Service land. If this turns out to be a new species, it will be one of the most spatially restricted species in North America (or "in the U.S." ). It will affect how the Forest Service manages these lands and may affect timber harvesting policy, mining and other things that go on in the area."

Marsh said the research has progressed well this summer, and the W&L team hopes to provide the Forest Service with a definitive answer on the Sherando salamander by the fall.

(Images available at http://www.wlu.edu/x34136.xml)

Sarah Tschiggfrie | Newswise Science News
Further information:
http://www.wlu.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>