Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team learns how cellular protein detects viruses, sparks immune response

20.02.2009
A study led by researchers at the University of Illinois reveals how a cellular protein recognizes an invading virus and alerts the body to the infection.

The research, described this week in the journal Science and led by Illinois physics professor and Howard Hughes Medical Institute investigator Taekjip Ha, settles a debate over how the protein, RIG-I (pronounced rig-EYE), is able to distinguish between viral RNA and self (or cellular) RNA.

“RIG-I is the first molecule in the immune response to detect viral RNA,” said Sua Myong, lead author on the study and a professor at the U. of I.’s Institute for Genomic Biology. Unlike most other proteins known to detect viral infections only in specialized immune cells, RIG-I is active in every cell type in the body, she said.

The RIG-I protein has two major parts: caspase-recruitment domains (CARDs) and an ATPase domain that consumes ATP, the cellular fuel molecule.

Previous studies had shown that the CARD domains actually inhibit the activity of RIG-I when no virus is present, but are vital to sounding the alarm and triggering an immune response once a certain type of virus has been detected.

Other studies had found that RIG-I recognizes an important feature of viral RNAs that is missing from most human RNAs. This feature, a “triphosphate” tag at a particular end, the “five-prime” (5’) end, of viral RNA, is a viral fingerprint that tells RIG-I that something is amiss. Detection of this tag starts a cascade of reactions that allows RIG-I to broadcast a message to other cellular components, and ultimately to other cells.

The researchers also knew that RIG-I was usually active in the presence of double-stranded RNA, not the single-stranded RNA found in most animal cells.

Earlier research had also shown that the central ATPase domain is critical to the function of the molecule. A single mutation in this region shuts down its activity altogether.

“We knew that the CARD domain was responsible for transmitting the antiviral signaling,” Myong said. “And we knew how the 5’-triphosphate tag is detected. But a big question remained about the ATPase domain: It was using ATP to do something – but what?”

To solve that mystery, the researchers used a technique termed “protein-induced fluorescent enhancement.” This method makes use of a fluorescent dye that, when attached to a specific region of a molecule such as RNA, glows with more or less intensity depending on its proximity to a protein that is interacting with that molecule.

Using this technique, the researchers found that the RIG-I protein moves back and forth (translocates) selectively on double-stranded RNA, and that this activity is greatly stimulated in the presence of 5’-triphosphate.

By requiring both the 5’-triphosphate and the double-stranded RNA for it to function, the RIG-I protein is able to very accurately detect a viral invader, said Ha.

Most cellular RNAs have their triphosphate tails bobbed, capped or otherwise modified before circulating in the cytosol of the cell, he said. “So this is one powerful way of distinguishing viral RNA from cellular RNA.”

Prior to this study, researchers did not know if RIG-I sensed both the double-stranded RNA and the 5’-triphosphate separately, or in an integrated manner, said Myong.

“Our work bridges the gap,” she said. “We show that it does both in an integrated manner.”

Ha is also an affiliate of the Institute for Genomic Biology and co-director of the Center for the Physics of Living Cells at Illinois.

Funding for this research was provided by the National Institute of General Medical Sciences and the National Science Foundation.

Editor’s note: To reach Sua Myong, call 217-244-5057; email: smyong@illinois.edu

To reach Taekjip Ha, call 217-265-0717; email: tjha@illinois.edu

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu
http://news.illinois.edu/news/09/0219protein.html

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>