Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team learns how cellular protein detects viruses, sparks immune response

20.02.2009
A study led by researchers at the University of Illinois reveals how a cellular protein recognizes an invading virus and alerts the body to the infection.

The research, described this week in the journal Science and led by Illinois physics professor and Howard Hughes Medical Institute investigator Taekjip Ha, settles a debate over how the protein, RIG-I (pronounced rig-EYE), is able to distinguish between viral RNA and self (or cellular) RNA.

“RIG-I is the first molecule in the immune response to detect viral RNA,” said Sua Myong, lead author on the study and a professor at the U. of I.’s Institute for Genomic Biology. Unlike most other proteins known to detect viral infections only in specialized immune cells, RIG-I is active in every cell type in the body, she said.

The RIG-I protein has two major parts: caspase-recruitment domains (CARDs) and an ATPase domain that consumes ATP, the cellular fuel molecule.

Previous studies had shown that the CARD domains actually inhibit the activity of RIG-I when no virus is present, but are vital to sounding the alarm and triggering an immune response once a certain type of virus has been detected.

Other studies had found that RIG-I recognizes an important feature of viral RNAs that is missing from most human RNAs. This feature, a “triphosphate” tag at a particular end, the “five-prime” (5’) end, of viral RNA, is a viral fingerprint that tells RIG-I that something is amiss. Detection of this tag starts a cascade of reactions that allows RIG-I to broadcast a message to other cellular components, and ultimately to other cells.

The researchers also knew that RIG-I was usually active in the presence of double-stranded RNA, not the single-stranded RNA found in most animal cells.

Earlier research had also shown that the central ATPase domain is critical to the function of the molecule. A single mutation in this region shuts down its activity altogether.

“We knew that the CARD domain was responsible for transmitting the antiviral signaling,” Myong said. “And we knew how the 5’-triphosphate tag is detected. But a big question remained about the ATPase domain: It was using ATP to do something – but what?”

To solve that mystery, the researchers used a technique termed “protein-induced fluorescent enhancement.” This method makes use of a fluorescent dye that, when attached to a specific region of a molecule such as RNA, glows with more or less intensity depending on its proximity to a protein that is interacting with that molecule.

Using this technique, the researchers found that the RIG-I protein moves back and forth (translocates) selectively on double-stranded RNA, and that this activity is greatly stimulated in the presence of 5’-triphosphate.

By requiring both the 5’-triphosphate and the double-stranded RNA for it to function, the RIG-I protein is able to very accurately detect a viral invader, said Ha.

Most cellular RNAs have their triphosphate tails bobbed, capped or otherwise modified before circulating in the cytosol of the cell, he said. “So this is one powerful way of distinguishing viral RNA from cellular RNA.”

Prior to this study, researchers did not know if RIG-I sensed both the double-stranded RNA and the 5’-triphosphate separately, or in an integrated manner, said Myong.

“Our work bridges the gap,” she said. “We show that it does both in an integrated manner.”

Ha is also an affiliate of the Institute for Genomic Biology and co-director of the Center for the Physics of Living Cells at Illinois.

Funding for this research was provided by the National Institute of General Medical Sciences and the National Science Foundation.

Editor’s note: To reach Sua Myong, call 217-244-5057; email: smyong@illinois.edu

To reach Taekjip Ha, call 217-265-0717; email: tjha@illinois.edu

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu
http://news.illinois.edu/news/09/0219protein.html

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>