Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team Identifies New Breast Cancer Tumor Suppressor and How it Works

27.06.2011
Researchers have identified a protein long known to regulate gene expression as a potent suppressor of breast cancer growth. Their study, in the journal Oncogene, is the first to demonstrate how this protein, known as Runx3, accomplishes this feat.

“People suggested that Runx3 might be a tumor suppressor in breast cancer because they found that it is down-regulated in a lot of breast cancer cell lines and breast cancer tissues,” said University of Illinois medical biochemistry professor Lin-Feng Chen, who led the study.

But no previous studies uncovered direct evidence to support that idea, he said.
In the new study, Chen and his colleagues at Nagasaki University discovered that a significant proportion of mice lacking one of two Runx3 genes spontaneously developed mammary gland tumors at 14 or 15 months of life – an age corresponding to age 40 to 50 in humans.

“We found mammary tumors growing in about 20 percent of the female mice lacking a copy of the Runx3 gene,” Chen said. None of the mice with two normal copies of the gene developed tumors.

The researchers also found that estrogen receptor alpha (ER-alpha), a well-known culprit in the development of many breast tumors, was up-regulated in the mouse tumors. ER-alpha is overexpressed in about 75 percent of human cases of breast cancer, and enhanced ER-alpha expression in normal breast tissue is associated with an increased risk of breast cancer, Chen said.

Circulating estrogen binds to ER-alpha and initiates a chain of events that alter gene expression in the targeted cell. This is a normal part of cellular signaling, but in ER-positive breast cancers, the overexpression of ER-alpha leads to enhanced tumor cell survival, growth and proliferation.

The researchers found that when Runx3 was re-introduced into ER-alpha positive breast cancer cell lines, it suppressed the growth of the cancer cells and inhibited the potential of the cancer cells to form tumors in the mouse. Further experiments revealed that Runx3 actually targeted ER-alpha signaling by inducing the degradation of ER-alpha.

“By regulating the cellular levels of ER-alpha, Runx3 appears to control the cell’s response to circulating estrogen, thus playing an important role in the onset of breast cancer,” Chen said.

Chen sees three potential benefits that spring from this study. First, the researchers have discovered a mouse model of spontaneously occurring mammary tumors that corresponds to an age of increased risk of breast cancer in humans.

Second, Chen hopes to develop a simple test to measure Runx3 levels in mammary tissue.

“We know from other people’s studies that Runx3 is inactivated in the early stages of breast cancer,” he said. “So we might be able to use Runx3 as a biomarker of early stage breast cancer.”

And third, since the Runx3 gene appears to be intact but inactivated in breast cancer, future studies will focus on reversing its inactivation, Chen said.
“If you can reactivate Runx3, then you can suppress tumor growth,” he said.
The study team also included researchers from the University of Pittsburgh Medical Center and the National University of Singapore.

The National Institutes of Health and the U. of I. Campus Research Board funded this study.

The paper, “RUNX3 Acts as a Tumor Suppressor in Breast Cancer by Targeting Estrogen Receptor Alpha,” is available from the U. of I. News Bureau.

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu.

Further reports about: Cancer ER-alpha Runx3 Runx3 genes breast cancer cancer cells early stage suppressor

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>