Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team discovers how bacteria resist a 'Trojan horse' antibiotic

20.03.2012
A new study describes how bacteria use a previously unknown means to defeat an antibiotic. The researchers found that the bacteria have modified a common “housekeeping” enzyme in a way that enables the enzyme to recognize and disarm the antibiotic.
The study appears in the Proceedings of the National Academy of Sciences.
Bacteria often engage in chemical warfare with one another, and many antibiotics used in medicine are modeled on the weapons they produce.

But microbes also must protect themselves from their own toxins. The defenses they employ for protection can be acquired by other species, leading to antibiotic resistance.

The researchers focused on an enzyme, known as MccF, that they knew could disable a potent “Trojan horse” antibiotic that sneaks into cells disguised as a tasty protein meal. The bacterial antibiotic, called microcin C7 (McC7) is similar to a class of drugs used to treat bacterial infections of the skin.

“How Trojan horse antibiotics work is that the antibiotic portion is coupled to something that’s fairly innocuous – in this case it’s a peptide,” said University of Illinois biochemistry professor Satish Nair, who led the study. “So susceptible bacteria see this peptide, think of it as food and internalize it.”

The meal comes at a price, however: Once the bacterial enzymes chew up the amino acid disguise, the liberated antibiotic is free to attack a key component of protein synthesis in the bacterium, Nair said.

“That is why the organisms that make this thing have to protect themselves,” he said.

In previous studies, researchers had found the genes that protect some bacteria from this class of antibiotic toxins, but they didn’t know how they worked. These genes code for peptidases, which normally chew up proteins (polypeptides) and lack the ability to recognize anything else.

Before the new study, “it wasn’t clear how a peptidase could destroy an antibiotic,” Nair said.

To get a fuller picture of the structure of the peptidase, Illinois graduate student Vinayak Agarwal crystallized MccF while it was bound to other molecules, including the antibiotic. An analysis of the structure and its interaction with the antibiotic revealed that MccF looked a lot like other enzymes in its family, but with a twist – or, rather, a loop. Somehow MccF has picked up an additional loop of amino acids that it uses to recognize the antibiotic, rendering it ineffective.

“Now we know that specific amino acid residues in this loop are responsible for making this from a normal housekeeping gene into something that’s capable of degrading this class of antibiotics,” Nair said.

With this information, researchers – and eventually, doctors and other clinicians – will be able to scan the genomes of disease-causing bacteria to find out which ones have genes with the antibiotic-resistance loop in them, Nair said. “If we know what type of bacteria are causing an infection we know what kind of antibiotic to give and what kind not to give,” he said.

Nair also is an affiliate of the Center for Biophysics and Computational Biology, the department of chemistry and of the Institute for Genomic Biology at Illinois. The research team included scientists from the Russian Academy of Sciences and Rutgers University.

Editor’s notes: To reach Satish Nair, call 217-333-0641;
email snair@illinois.edu
The paper, “Structure and Function of a Serine Carboxypeptidase Adapted for Degradation of the Protein Synthesis Antibiotic Microcin C7,” is available online or from the U. of I. News Bureau.

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>