Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team discovers how bacteria resist a 'Trojan horse' antibiotic

20.03.2012
A new study describes how bacteria use a previously unknown means to defeat an antibiotic. The researchers found that the bacteria have modified a common “housekeeping” enzyme in a way that enables the enzyme to recognize and disarm the antibiotic.
The study appears in the Proceedings of the National Academy of Sciences.
Bacteria often engage in chemical warfare with one another, and many antibiotics used in medicine are modeled on the weapons they produce.

But microbes also must protect themselves from their own toxins. The defenses they employ for protection can be acquired by other species, leading to antibiotic resistance.

The researchers focused on an enzyme, known as MccF, that they knew could disable a potent “Trojan horse” antibiotic that sneaks into cells disguised as a tasty protein meal. The bacterial antibiotic, called microcin C7 (McC7) is similar to a class of drugs used to treat bacterial infections of the skin.

“How Trojan horse antibiotics work is that the antibiotic portion is coupled to something that’s fairly innocuous – in this case it’s a peptide,” said University of Illinois biochemistry professor Satish Nair, who led the study. “So susceptible bacteria see this peptide, think of it as food and internalize it.”

The meal comes at a price, however: Once the bacterial enzymes chew up the amino acid disguise, the liberated antibiotic is free to attack a key component of protein synthesis in the bacterium, Nair said.

“That is why the organisms that make this thing have to protect themselves,” he said.

In previous studies, researchers had found the genes that protect some bacteria from this class of antibiotic toxins, but they didn’t know how they worked. These genes code for peptidases, which normally chew up proteins (polypeptides) and lack the ability to recognize anything else.

Before the new study, “it wasn’t clear how a peptidase could destroy an antibiotic,” Nair said.

To get a fuller picture of the structure of the peptidase, Illinois graduate student Vinayak Agarwal crystallized MccF while it was bound to other molecules, including the antibiotic. An analysis of the structure and its interaction with the antibiotic revealed that MccF looked a lot like other enzymes in its family, but with a twist – or, rather, a loop. Somehow MccF has picked up an additional loop of amino acids that it uses to recognize the antibiotic, rendering it ineffective.

“Now we know that specific amino acid residues in this loop are responsible for making this from a normal housekeeping gene into something that’s capable of degrading this class of antibiotics,” Nair said.

With this information, researchers – and eventually, doctors and other clinicians – will be able to scan the genomes of disease-causing bacteria to find out which ones have genes with the antibiotic-resistance loop in them, Nair said. “If we know what type of bacteria are causing an infection we know what kind of antibiotic to give and what kind not to give,” he said.

Nair also is an affiliate of the Center for Biophysics and Computational Biology, the department of chemistry and of the Institute for Genomic Biology at Illinois. The research team included scientists from the Russian Academy of Sciences and Rutgers University.

Editor’s notes: To reach Satish Nair, call 217-333-0641;
email snair@illinois.edu
The paper, “Structure and Function of a Serine Carboxypeptidase Adapted for Degradation of the Protein Synthesis Antibiotic Microcin C7,” is available online or from the U. of I. News Bureau.

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>