Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Team determines structure of a molecular machine that targets viral DNA for destruction


With a featured publication in the Aug. 7 issue of Science, Montana State University researchers have made a significant contribution to the understanding of a new field of DNA research, with the acronym CRISPR, that holds enormous promise for fighting infectious diseases and genetic disorders.

The MSU-led research provides the first detailed blueprint of a multi-subunit "molecular machinery" that bacteria use to detect and destroy invading viruses.

"We generally think of bacteria as making us sick, but rarely do we consider what happens when the bacteria themselves get sick. Viruses that infect bacteria are the most abundant biological agents on the planet, outnumbering their bacterial hosts 10 to 1," said Blake Wiedenheft, senior author of the paper and assistant professor in MSU's Department of Microbiology and Immunology.

"Bacteria have evolved sophisticated immune systems to fend off viruses. We now have a precise molecular blueprint of a surveillance machine that is critical for viral defense," Wiedenheft said.

These immune systems rely on a repetitive piece of DNA in the bacterial genome called a CRISPR. CRISPR is an acronym that stands for Clustered Regularly Interspaced Short Palindromic Repeats. These repetitive elements maintain a molecular memory of viral infection by inserting short segments of invading viral DNA into the DNA of the "defending" bacteria. This information is then used to guide the bacteria's immune system to destroy the invading viral DNA.

The molecular blueprint of the surveillance complex was determined by a team of scientists in Wiedenheft's lab at MSU using a technique called X-ray crystallography. Ryan Jackson, a postdoctoral fellow in the Wiedenheft lab, collected X-ray diffraction data from synchrotron radiation sources located in Chicago, Berkeley, and Stanford.

"Interpreting these X-ray diffraction patterns is a complex mathematical problem and Ryan is one of a few people in the world capable of interpreting this data," Wiedenheft said.

To help determine the structure, Wiedenheft sent Jackson to Duke University for a biannual meeting on X-ray crystallography. At the meeting, Jackson sat between "two of the greatest minds in the field of X-ray crystallography"– Randy Read from the University of Cambridge and Thomas Terwilliger from Los Alamos National Lab -- whose expertise facilitated the computational analysis of the data, which was critical for determining the structure.

"The structure of this biological machine is conceptually similar to an engineer's blueprint, and it explains how each of the parts in this complex assemble into a functional complex that efficiently identifies viral DNA when it enters the cell," Wiedenheft said. "This surveillance machine consists of 12 different parts and each part of the machine has a distinct job. If we're missing one part of the machine, it doesn't work."

Understanding how these machines work is leading to unanticipated new innovations in medicine and biotechnology and agriculture. These CRISPR-associated machines are programmable nucleases (molecular scissors) that are now being exploited for precisely altering the DNA sequence of almost any cell type of interest.

"In nature these immune system evolved to protect bacteria form viruses, but we are now repurposing these systems to cut viral DNA out of human cells infected with HIV. You can think of this as a form of DNA surgery. Therapies that were unimaginable may be possible in the future," Wiedenheft said.

"We know the genetic basis for many plant, animal, and human diseases, and these CRISRP-associated nucleases are now being used in research settings to surgically remove or repair defective genes," Wiedenheft said. "This technology is revolutionizing how molecular genetics is done and MSU has a large group of researchers that are at the cutting edge of this technological development."

Wiedenheft, a native of Fort Peck, Mont., was recently recruited by MSU from UC-Berkeley. Wiedenheft explained that the research environment, colleagues and support at MSU is second to none and the opportunity to move back to this great state was a "no-brainer."


In addition to Jackson, Read, Terwilliger and Wiedenheft, MSU co-authors on the Science paper are research associate Sarah Golden, graduate student Paul van Erp and undergraduate Joshua Carter.

Additional collaborators included co-authors Edze Westra, Stan Brouns and John van der Oost from Wageningen University in the Netherlands.

Research in the Wiedenheft lab is supported by the National Institutes of Health, the National Science Foundation EPSCoR, the M.J. Murdock Charitable Trust, and the MSU Agricultural Experimental Station. Atomic coordinates for the Cascade structure have been deposited into the public repository (Protein Data Bank) under access code 4TVX.

Evelyn Boswell | Eurek Alert!
Further information:

Further reports about: CRISPR DNA Science X-ray bacteria bacterial blueprint destruction immune structure viruses

More articles from Life Sciences:

nachricht Molecular trigger for Cerebral Cavernous Malformation identified
26.11.2015 | EMBO - excellence in life sciences

nachricht Peering into cell structures where neurodiseases emerge
26.11.2015 | University of Delaware

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Using sphere packing models to explain the structure of forests

26.11.2015 | Ecology, The Environment and Conservation

Dimensionality transition in a newly created material

26.11.2015 | Materials Sciences

Revealing glacier flow with animated satellite images

26.11.2015 | Earth Sciences

More VideoLinks >>>