Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Team determines structure of a molecular machine that targets viral DNA for destruction


With a featured publication in the Aug. 7 issue of Science, Montana State University researchers have made a significant contribution to the understanding of a new field of DNA research, with the acronym CRISPR, that holds enormous promise for fighting infectious diseases and genetic disorders.

The MSU-led research provides the first detailed blueprint of a multi-subunit "molecular machinery" that bacteria use to detect and destroy invading viruses.

"We generally think of bacteria as making us sick, but rarely do we consider what happens when the bacteria themselves get sick. Viruses that infect bacteria are the most abundant biological agents on the planet, outnumbering their bacterial hosts 10 to 1," said Blake Wiedenheft, senior author of the paper and assistant professor in MSU's Department of Microbiology and Immunology.

"Bacteria have evolved sophisticated immune systems to fend off viruses. We now have a precise molecular blueprint of a surveillance machine that is critical for viral defense," Wiedenheft said.

These immune systems rely on a repetitive piece of DNA in the bacterial genome called a CRISPR. CRISPR is an acronym that stands for Clustered Regularly Interspaced Short Palindromic Repeats. These repetitive elements maintain a molecular memory of viral infection by inserting short segments of invading viral DNA into the DNA of the "defending" bacteria. This information is then used to guide the bacteria's immune system to destroy the invading viral DNA.

The molecular blueprint of the surveillance complex was determined by a team of scientists in Wiedenheft's lab at MSU using a technique called X-ray crystallography. Ryan Jackson, a postdoctoral fellow in the Wiedenheft lab, collected X-ray diffraction data from synchrotron radiation sources located in Chicago, Berkeley, and Stanford.

"Interpreting these X-ray diffraction patterns is a complex mathematical problem and Ryan is one of a few people in the world capable of interpreting this data," Wiedenheft said.

To help determine the structure, Wiedenheft sent Jackson to Duke University for a biannual meeting on X-ray crystallography. At the meeting, Jackson sat between "two of the greatest minds in the field of X-ray crystallography"– Randy Read from the University of Cambridge and Thomas Terwilliger from Los Alamos National Lab -- whose expertise facilitated the computational analysis of the data, which was critical for determining the structure.

"The structure of this biological machine is conceptually similar to an engineer's blueprint, and it explains how each of the parts in this complex assemble into a functional complex that efficiently identifies viral DNA when it enters the cell," Wiedenheft said. "This surveillance machine consists of 12 different parts and each part of the machine has a distinct job. If we're missing one part of the machine, it doesn't work."

Understanding how these machines work is leading to unanticipated new innovations in medicine and biotechnology and agriculture. These CRISPR-associated machines are programmable nucleases (molecular scissors) that are now being exploited for precisely altering the DNA sequence of almost any cell type of interest.

"In nature these immune system evolved to protect bacteria form viruses, but we are now repurposing these systems to cut viral DNA out of human cells infected with HIV. You can think of this as a form of DNA surgery. Therapies that were unimaginable may be possible in the future," Wiedenheft said.

"We know the genetic basis for many plant, animal, and human diseases, and these CRISRP-associated nucleases are now being used in research settings to surgically remove or repair defective genes," Wiedenheft said. "This technology is revolutionizing how molecular genetics is done and MSU has a large group of researchers that are at the cutting edge of this technological development."

Wiedenheft, a native of Fort Peck, Mont., was recently recruited by MSU from UC-Berkeley. Wiedenheft explained that the research environment, colleagues and support at MSU is second to none and the opportunity to move back to this great state was a "no-brainer."


In addition to Jackson, Read, Terwilliger and Wiedenheft, MSU co-authors on the Science paper are research associate Sarah Golden, graduate student Paul van Erp and undergraduate Joshua Carter.

Additional collaborators included co-authors Edze Westra, Stan Brouns and John van der Oost from Wageningen University in the Netherlands.

Research in the Wiedenheft lab is supported by the National Institutes of Health, the National Science Foundation EPSCoR, the M.J. Murdock Charitable Trust, and the MSU Agricultural Experimental Station. Atomic coordinates for the Cascade structure have been deposited into the public repository (Protein Data Bank) under access code 4TVX.

Evelyn Boswell | Eurek Alert!
Further information:

Further reports about: CRISPR DNA Science X-ray bacteria bacterial blueprint destruction immune structure viruses

More articles from Life Sciences:

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

nachricht Bioluminescent sensor causes brain cells to glow in the dark
28.10.2016 | Vanderbilt University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>