Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tales from the crypt

14.11.2011
The lining of the intestine regenerates itself every few days as compared to say red blood cells that turn over every four months. The cells that help to absorb food and liquid that humans consume are constantly being produced. The various cell types that do this come from stem cells that reside deep in the inner recesses of the accordion-like folds of the intestines, called villi and crypts.

But exactly where the most important stem cell type is located -- and how to identify it -- has been something of a mystery. In fact, two types of intestinal stem cells have been proposed to exist but the relationship between them has been unclear. One type of stem cell divides slowly and resides at the sides of intestinal crypts. The other divides much more quickly and resides at the bottom of the crypts.

Some researchers have been proponents of one type of stem cell or the other as the "true" intestinal stem cell. Recent work published this week in Science from the lab of Jonathan Epstein, MD, chairman of the Department of Cell and Developmental Biology from the Perelman School of Medicine at the University of Pennsylvania, may reconcile this controversy. The findings suggest that these two types of stem cells are related. In fact, each can produce the other, which surprised the researchers.

"We actually began our studies by looking at stem cells in the heart and other organs," Epstein said. "In other tissues in the body, slowly dividing cells can sometimes give rise to more rapidly dividing stem cells that are called to action when tissue regeneration is required. Our finding that this can happen in reverse in the intestine was not expected."

The discovery that rapidly cycling gut stem cells can regenerate the quiescent stem cells -- slowly dividing and probably long-lived -- suggests that the developmental pathways in human organs that regenerate quickly like in the gut, skin, blood, and bone, may be more flexible than previously appreciated.

"This better appreciation and understanding may help us learn how to promote the regeneration of tissue-specific adult stem cells that could subsequently help with tissue regeneration," says Epstein. "It may also help us to understand the cell types that give rise to cancer in the colon and stomach."

Co-authors are, all from Penn, Norifumi Takeda, Rajan Jain, Matthew R. LeBoeuf, Qiaohong Wang, and Min Min Lu. The work was funded by the National Heart, Lung and Blood Institute of the National Institutes of Health and by the Penn Institute for Regenerative Medicine.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4 billion enterprise.

Penn's Perelman School of Medicine is currently ranked #2 in U.S. News & World Report's survey of research-oriented medical schools and among the top 10 schools for primary care. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $507.6 million awarded in the 2010 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top 10 hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; and Pennsylvania Hospital – the nation's first hospital, founded in 1751. Penn Medicine also includes additional patient care facilities and services throughout the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2010, Penn Medicine provided $788 million to benefit our community.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>