Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


It Takes Guts to Build Bone

Bone growth is controlled in the gut through serotonin, the same naturally present chemical used by the brain to influence mood, appetite and sleep, according to a new discovery from researchers at Columbia University Medical Center.

Until now, the skeleton was thought to control bone growth, and serotonin was primarily known as a neurotransmitter acting in the brain. This new insight could transform how osteoporosis is treated in the future by giving doctors a way to increase bone mass, not just slow its loss. Findings are reported in the Nov. 26, 2008 issue of Cell.

Researchers have known that 95 percent of the body’s serotonin is produced by a part of the gastrointestinal tract known as the duodenum, where it was presumed to be involved in digestion. The brain is where the remaining five percent of the body’s serotonin is produced.

The Columbia research group, led by Gerard Karsenty, M.D., Ph.D., chair of the Department of Genetics and Development at Columbia University College of Physicians and Surgeons, had originally set out to elucidate two rare human diseases affecting bone that are both caused by a mutation in a gene called Lrp5. To their surprise, Dr. Karsenty and his team found that Lrp5 regulates synthesis of serotonin in the gut, and that by turning on or turning off the production of this chemical within the gut, they could control bone formation. Specifically, they found that serotonin tells cells in the skeleton to slow production of new bone. By turning off the intestine’s release of serotonin, the team was able to prevent osteoporosis in mice undergoing menopause.

“This proof-of-principle paper shows, to our amazement, that bone formation is regulated to a significant extent by the gut! Through our observations of two rare and severe forms of osteoporosis, one that causes drastic bone loss and one that causes extremely high bone mass, we were able to see clearly what happens with over-production or under-production of serotonin,” said Dr. Karsenty. “Our hope is that this novel discovery will inform the development of new therapies for the millions of people with osteoporosis.”

Challenging Fundamental Understanding of Bone Formation

Far from being inert, bone constantly undergoes renovation, with some cells responsible for removing old material and other cells responsible for creating new bone. In humans, after age 20, the balance between bone formation and breakdown tips toward breakdown, and bone mass starts to decline. In women, the rate of decline increases after menopause, when estrogen levels drop and cells that tear down old bone become overactive. Osteoporosis is a disease in which bones become fragile and porous, increasing the risk of breaks. It is diagnosed when bone mass drops below a certain level.

This discovery that intestinal serotonin is central to bone formation will likely challenge previously held beliefs among researchers in the field, who have thought for years that the majority of hormones that control bone mass had been identified.

A crucial clue uncovered in Dr. Karsenty’s lab turned his attention to the small intestine. His research team found that the gene Lrp5, which had been previously linked to a rare form of osteoporosis, controls the production of serotonin in the gut, and that serotonin is an inhibitor of bone formation. Indeed, by inactivating Lrp5 in the small intestine of mice and thereby turning on the production of serotonin, bone mass decreased. While in contrast, the deletion of the same gene in the bone cells of mice, on the other hand, had no effect on bone mass.

“The findings demonstrate without a doubt that serotonin from the gut is acting as a hormone to regulate bone mass,” said Dr. Karsenty. “As an endocrinologist, I have spent a large part of my career investigating the interplay between energy metabolisms and bone mass. This demonstration of the vital function of bone proliferation stemming from the gut gives pause to those in my field who perhaps have not given the gut its due examination or the credit it deserves for how much it controls in the body, and that includes me.”

Though all the experiments were conducted in mice, the findings apply to humans, according to Dr. Karsenty, since this work was prompted by the elucidation of the two human genetic bone diseases. Indeed, Dr. Karsenty’s group verified that circulating serotonin levels were abnormal in human patients with both diseases.

Implications for the Treatment of Osteoporosis

Most osteoporosis drugs, including those currently under clinical investigation, do not generate new bone but prevent the breakdown of old bone. Only one drug currently on the market can generate new bone, but due to reports that it may increase the risk of bone cancer, its use is restricted for short-term use in women with severe osteoporosis.

“This lack of bone promoting drugs is a major concern because osteoporosis is often diagnosed when the damage to bone is already significant and fracture risk is already too high,” said Dr. Karsenty. “We need something to build bone, not just prevent or repair its loss.”

Reducing serotonin release from the small intestine should be relatively simple to achieve with a drug, according to Dr. Karsenty, because the cells that produce serotonin come into direct contact with drugs that pass through the gastrointestinal tract. An inhibitor of gut-derived serotonin synthesis would not need to enter the general circulation, thereby avoiding many potential side effects.

Dr. Karsenty and his colleagues did not find any gastrointestinal problems in mice unable to produce serotonin in their guts, suggesting that a serotonin inhibitor would not produce any such side effects in humans.

This research was supported by grants from the March of Dimes Foundation and the National Institutes of Health.

Co-authors on this paper include Vijay K. Yadav, Je-Hwang Ryu, and Nina Suda from the Department of Genetics and Development at Columbia University Medical Center (CUMC); Kenji Tanaka and Rene Hen, Department of Pharmacology (CUMC); Jay A. Gingrich, Department of Psychiatry-Developmental Psychobiology (CUMC); Gunther Schutz, Department of Molecular Biology of the Cell, German Research Center, Heidelberg Germany; Francis Glorieux, Shriners Hospital for Children, McGill University, Montreal, Canada; Cherie Y. Chiang and Jeffrey D. Zajac, Department of Medicine, University of Melbourne, Heidelberg, Australia; Karl L. Insogna, Department of Internal Medicine, Yale School of Medicine; J. John Mann, Department of Psychiatry (CUMC), and Patricia Ducy, Department of Pathology (CUMC).

Columbia University Medical Center provides international leadership in basic, pre-clinical and clinical research, in medical and health sciences education, and in patient care. The medical center trains future health care leaders at the College of Physicians & Surgeons, the Mailman School of Public Health, the College of Dental Medicine, the School of Nursing, the biomedical departments of the Graduate School of Arts and Sciences, and allied research centers and institutions. Established in 1767, Columbia’s College of Physicians & Surgeons was the first in the country to grant the M.D. degree. Columbia University Medical Center is home to the largest medical research enterprise in New York City and state and one of the largest in the United States.

Elizabeth Streich | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>