Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tactile croc jaws more sensitive than human fingertips

08.11.2012
Armoured in elaborate scales, the skins of crocodiles and alligators are much prized by the fashion industry. But sadly, not all skins are from farmed animals.

Some are from endangered species and according to Ken Catania from Vanderbilt University, USA, sometimes the only way to distinguish legitimate hides from poached skins is to look at the distribution of thousands of microscopic pigmented bumps that pepper crocodiles' bodies.

Adding that the minute dome organs are restricted to the faces of alligators, Catania puzzled, 'What are the organs for?' Explaining that they have been proposed to detect subtle shifts in water salinity and shown to sense ripples in water, Catania says, 'We suspected that there might be more to the story', so he and Duncan Leitch teamed up to take a closer look at the small structures. The duo discovered that the bumps are tactile and even more touch sensitive than human fingertips. They publish their discovery in The Journal of Experimental Biology at http://jeb.biologists.org.

Observing the skin of American alligators and Nile crocodiles with scanning electron microscopy, Leitch could see that each dome was surrounded by a hinge depression. And when he sliced through a series of domes to identify the sensory receptor structures beneath, he found sensitive free nerve endings near the dome surface, and laminated corpuscle structures – which are vibration sensitive – and dermal Merkel complexes – which respond to sustained pressure – in the lowest skin layer.

Next, Leitch stained the nerve structures leading from the skin through the reptile's jaw and painstakingly traced the sensitive trigeminal nerve as it branched to the domes. 'The innervation of these jaws was incredible!' exclaims Catania. The entire jaw was infiltrated with a delicate network of nerves. 'There was a tremendous number of nerve endings and each of the nerve endings comes out of a hole in the skull', Leitch adds. Referring to the animal's combative lifestyle, he suggests that this arrangement protects the delicate trigeminal nerve fibres – carried inside the skull – from damage during attacks while maximising the nerve endings' sensitivity at the surface.

But none of these observations answered the question of which system the domes relay sensory information to. Recalling that the domes had been proposed to detect salinity changes and even electric fields, Leitch gently bathed the limbs of Nile crocodiles in brackish water while carefully recording the electrical activity in the spinal nerve, but couldn't detect a signal. And when he repeated the experiments while applying a weak electric field to the water, there was no response again. However, when Leitch gently touched one of the sensory domes with a minute hair designed to test human touch sensitivity, he discovered that the domes around the animals' teeth and jaws were even more touch sensitive than human finger-tips. And when he filmed crocodiles and alligators going about their business in the aquarium at night, he was impressed at how fast the animal's 50 ms response times were. 'As soon as they feel something touch, they snap at it', recalls Catania.

So, why do such well-armoured animals require such an exquisite sense of touch? Leitch suggests that this sensitivity allows the animals to distinguish rapidly between unpalatable pieces of debris and tasty prey while also allowing mother crocodiles to dextrously aid their hatching young by extracting them from the egg with their jaws. The pair is keen to understand how these sensory areas map onto the forebrain. Explaining that massive regions of the human brain are dedicated to processing touch sensory information, Catania says, 'Crocodilians are not an ancestor to humans, but they are an important branch that allows us to fill in key parts of the evolutionary puzzle for how sensory maps in the forebrain have evolved'.

IF REPORTING ON THIS STORY, PLEASE MENTION THE JOURNAL OF EXPERIMENTAL BIOLOGY AS THE SOURCE AND, IF REPORTING ONLINE, PLEASE CARRY A LINK TO: http://jeb.biologists.org/content/215/23/4217.abstract

REFERENCE: Leitch, D. B. and Catania, K. C. (2012). Structure, innervation and response properties of integumentary sensory organs in crocodilians. J. Exp. Biol. 215, 4217-4230.

This article is posted on this site to give advance access to other authorised media who may wish to report on this story. Full attribution is required, and if reporting online a link to jeb.biologists.com is also required. The story posted here is COPYRIGHTED. Therefore advance permission is required before any and every reproduction of each article in full. PLEASE CONTACT permissions@biologists.com

kathryn Knight | EurekAlert!
Further information:
http://www.biologists.com

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>