Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


T-Shirt Replaces Battery

Fiber-based electrochemical micro-supercapacitor

Will we soon be plugging our mobile phone into our t-shirt instead of putting in a battery? This vision is not totally out of reach: the first steps in this direction have already been taken.

Now a team led by Zhong Lin Wang at the Georgia Institute of Technology (Atlanta, USA) and Jong Min Kim of Samsung Electronics in South Korea is introducing a prototype for a flexible energy storage device that can be worked into textiles. As the scientists report in the journal Angewandte Chemie, this supercapacitor is made of a very special arrangement of zinc oxide nanowires grown on conventional fibers.

Although smaller, lighter components are constantly being developed, most devices for energy generation and storage are much too bulky and heavy for increasingly miniaturized electronic devices of the future. Supercapacitors are an interesting alternative to batteries and rechargeable batteries for energy storage. They can be recharged almost endlessly and extremely fast; however, previous examples have not been flexible or light enough.

The research team has now developed a prototype for a high-efficiency fiber-based electrochemical micro-supercapacitor that uses zinc oxide nanowires as electrodes. The substrate for one of the electrode is a flexible, fine plastic wire; for the other electrode it is a fiber made of Kevlar. Kevlar is the material used to make bulletproof vests. The researchers were able to grow zinc oxide nanowires on each of these substrates. Additional coatings with materials like gold and manganese oxide could further improve the charge capacitance. Using tweezers, the researchers then wrapped each of the plastic wires with a Kevlar fiber. This assembly was then embedded in a solid gel electrolyte that separates the two electrodes and allows for the necessary charge transport. A bundle of these fibers could be processed to form a thread.

Zinc oxide has special advantages over conventional supercapacitor materials,: it can be grown on any desired substrate in any form at low temperature (below 100 °C) and it is both biocompatible and environmentally friendly.

A particularly intriguing application would be the use of these new charge-storage media in combination with flexible fiber nanogenerators, which Wang and his team have previously developed. The wearer’s heartbeat and steps, or even a light wind, would be enough to move the piezoelectric zinc oxide nanowires in the fibers, generating electrical current.

In the form of a “power shirt” such a system could deliver enough current for small electronic devices, such as mobile phones or small sensors like those used to warn firemen of toxins.

PS: The concept of an issue is a paradigm of the print world. Nowadays, most readers check the scientific literature for articles published online by using search engines and no longer care about bound issues. Or do they? Wiley-VCH now present yet another innovation in scientific publishing: Browse issues of Angewandte Chemie and a selection of its sister journals on screen as you would in print and broaden your horizons and be inspired by what the search engines do not find for you. On your desktop computer or your mobile device at

Author: Zhong Lin Wang, Georgia Institute of Technology, Atlanta (USA),

Title: Fiber Supercapacitors Made of Nanowire-Fiber Hybrid Structures for Wearable/Flexible Energy Storage

Angewandte Chemie International Edition, Permalink to the article:

Zhong Lin Wang | Angewandte Chemie
Further information:

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>