Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What System Biologists can find under the SYCAMORE tree

23.10.2008
Finding answers to the complexity of questions emerging in modern biology requires the use of quantitative, computational approaches.

Mathematical modelling is a critical component of systems biology studies of biochemical networks. However, the use and applicability of computational methods in systems biology is often hampered by the complexity of the software tools available for the modelling and simulation tasks.

SYCAMORE stands for a SYstems biology Computational Analysis and MOdeling Research Environment. It has been developed in order to support the user, particularly the non-expert user, in setting up, simulating and analysing biochemical models.

SYCAMORE is a web browser-based application that facilitates construction, simulation and analysis of kinetic models in systems biology. Functions include database supported modeling, basic model checking, model simulation and the estimation of unknown kinetic parameters based on protein structures.

... more about:
»Computational »SYCAMORE »Simulation »kinetic

It interfaces with other tools such as the COPASI Complex Pathway Simulator (www.copasi.org) and databases such as BRENDA (www.brenda-enzymes.info) and SABIO-RK (sabio.villa-bosch.de/SABIORK) which contain enzymatic kinetic data. In addition, it offers guidance in order to allow non-expert users to perform basic computational modelling tasks.

SYCAMORE is freely available for academic use at http://sycamore.eml.org.
Commercial users may acquire a license.
SYCAMORE is a joint project of the Molecular and Cellular Modeling Group
(MCM) and Scientific Databases and Visualization Group (SDBV) at EML
Research, as well as the department for Modeling of Biological Processes
at the University of Heidelberg. The development of SYCAMORE is
supported by the Klaus Tschira Foundation and the German Ministry of
Research and Education (BMBF) (HepatoSys Grant 0313078C).

Peter Saueressig | alfa
Further information:
http://sycamore.eml.org
http://www.eml-r.org/english/press/pressreleases.php?we_objectID=576

Further reports about: Computational SYCAMORE Simulation kinetic

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>