Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Syracuse University scientists discover new hitch to link nerve cell motors to their cargo

26.05.2011
With every bodily movement—from the blink of an eye to running a marathon—nerve cells transmit signals to muscle cells. To do that, nerve cells rely on tiny molecular motors to transport chemical messengers (neurotransmitters) that excite muscles cells into action. It’s a complex process, which scientists are still trying to understand. A new study by Syracuse University researchers has uncovered an important piece of the puzzle.

The study, published in the April 22 issue of the Journal of Biological Chemistry (JBC), describes the discovery of a protein that is involved in the motor-cargo mechanism that carries neurotransmitter chemicals to the nerve cell’s synapse. The synapse is the junction at which electrical and chemical signals are transmitted from one nerve cell to another cell. JBC is the premier journal of the American Society for Biochemistry and Molecular Biology.

The discovery was made by a team of scientists led by George M. Langford, a cell biologist and dean of SU’s College of Arts and Sciences. Team members included research associate Torsten Wollert and assistant professor Michael Cosgrove in the Department of Biology; and collaborators from Dartmouth College, the Marine Biological Laboratory at Woods Hole, and the McLaughlin Research Institute. The study was funded by the National Institutes of Health.

“The transportation of neurotransmitter vesicles to the synapse is critical to nerve cell function,” Langford says. “We want to better understand all of the molecular components involved in the transport process. We have discovered another ‘hitch’ that links the motor to its cargo.”

New insights into how the chemicals are transported could result in new kinds of drug therapy for such illnesses as Parkinson’s disease, depression and injuries to the neuromuscular system, Langford says.

Neurotransmitters, produced by nerve cells, are used to signal cells in every organ system in the body—from muscles to metabolism. The chemicals are packaged in small sacs called synaptic vesicles. The motors transporting these vesicles are composed of a protein called myosin-Va (Myo5a). Until now, it was not clearly understood how the Myo5a motor attached to the vesicle. In a series of experiments, Langford’s team demonstrated, for the first time, that Myo5a forms a complex with the protein Rab3A, which serves as the ‘hitch’ that snags the synaptic vesicle.

By understanding how the process works in normal cells, it’s possible for scientists to find ways to turn off a malfunctioning transportation system, Langford says. For example, over-production of the neurotransmitter dopamine has been linked to depression and other mental illnesses. It may be desirable to develop drugs that prevent dopamine from being transported. Likewise preventing the transportation of muscle-contracting neurotransmitters could ease painful muscle spasms associated with Parkinson’s disease and severe, nervous system injuries.

Langford’s research has been dedicated to understanding how organelles move within cells. He was the first to observe the movement of synaptic vesicles on actin filaments in addition to their previously known transportation on microtubules within nerve cells. Actin filaments and microtubules are the roads on which the molecular motors transport their cargo. “Think of microtubules as the expressways in the nerve cells and the actin filaments as the local streets,” Langford says.

In addition to his work on cellular transport mechanisms, Langford is researching ways to produce more effective drugs to treat Candida albicans, a fungus that causes infections in humans.

Judy Holmes | EurekAlert!
Further information:
http://www.syr.edu

Further reports about: Parkinson Syracuse actin filaments nerve cell synthetic biology

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>