Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


“Synthetic” Chromosome Permits Rapid, On-Demand “Evolution” of Yeast

Johns Hopkins researchers create man-made system with built-in diversity generator

In the quest to understand genomes—how they’re built, how they’re organized and what makes them work—a team of Johns Hopkins researchers has engineered from scratch a computer-designed yeast chromosome and incorporated into their creation a new system that lets scientists intentionally rearrange the yeast’s genetic material. A report of their work appears September 14 as an Advance Online Publication in the journal Nature.

“We have created a research tool that not only lets us learn more about yeast biology and genome biology, but also holds out the possibility of someday designing genomes for specific purposes, like making new vaccines or medications,” says Jef D. Boeke, Ph.D., Sc.D., professor of molecular biology and genetics, and director of the High Throughput Biology Center at the Johns Hopkins University School of Medicine.

Boeke notes that yeast is probably the best-studied organism with a nucleus on the planet and is “already used for everything from medicine to biofuel,” making it a good candidate for his team’s focus.

In designing the synthetic yeast chromosome, Boeke says, the goal was to make it maximally useful to researchers by laying down some ground rules: First, the product could not compromise yeast survival; second, it must be as streamlined as possible; and third, it had to contain the capacity for genetic flexibility and change.

Using the already known full genetic code—or DNA sequences—of the yeast genome as a starting point, Johns Hopkins graduate student Sarah Richardson wrote a software program for making a series of systematic changes to the DNA sequence. The changes were planned to subtly change the code and remove some of the repetitive and less used regions of DNA between genes, and to generate a mutated “version 2.0” of a yeast cell’s original 9R chromosome. The smallest chromosome arm in the yeast genome, 9R contains about 100,000 base pairs of DNA and represents about one percent of the single-celled organism’s genome.

Building the actual chromosome started with stringing individual bases of DNA together that were then assembled into longer segments. Large segments of about 10,000 base pairs were finally put into live yeast cells and essentially swapped for the native counterpart in the chromosome, a process for which yeast are naturally adept. In addition to 9R, the team also made a smaller piece of the chromosome 6L. Yeast cells containing the synthetic chromosomes were tested for their ability to grow on different nutrients and in different conditions, and in each case came out indistinguishable from natural yeast.

The Hopkins teams says what distinguishes this constructed chromosome from the native version — and sets it apart from other synthetic genome projects — is an “inducible evolution system” called SCRaMbLE, short for Synthetic Chromosome Rearrangement and Modification by Lox-P mediated Evolution.

“We developed SCRaMbLE to enable us to pull a mutation trigger — essentially causing the synthetic chromosome to rearrange itself and introducing changes similar to what might happen during evolution, but without the long wait,” explains Boeke. Why build in the scrambling system? To change multiple things at once, says Boeke, which is anathema among experimental scientists who traditionally change only one variable at a time, Nature is never that well controlled, he says.

The team activated SCRaMbLE in yeast containing both the synthetic 9R and 6L chromosomes, then analyzed the DNA from the yeast cells. Testing this population of SCRaMbLEd yeast fed various nutrients they found some grew fast, some grew slowly and others really slowly, and some of the fast-growing ones had very specific defects resulting from specific gene loss, showing that SCRaMbLE does indeed introduce random variation. When the team analyzed the molecular structure of the synthetic 9R and 6L chromosomes from this SCRaMbLEd population, they found chromosomes with small deletions, rearrangements, and other alterations, at wildly varying locations.

“If you think of the yeast genome as a deck of cards, we now have a system by which we can shuffle it and/or remove different combinations of 5000 of those cards to get lots of different decks from the same starter deck,” Boeke says. “While one derivative deck might yield good hands for poker, another might be better suited for pinochle. By shuffling the DNA according to our specifications, we hope to be able to custom design organisms that perhaps will grow better in adverse environments, or maybe make one percent more ethanol than native yeast.”

Boeke says the 9R and 6L experiments are “the beginning of a big project, whose ultimate goal is to synthesize the whole yeast genome (about 6000 genes) and SCRaMbLE the 5000 likely to be individually dispensable. And he wants to make the tool available to anyone who wants to use it, without intellectual property protection.

Major support for this study came from the National Science Foundation, with other contributions from Microsoft, Department of Energy, and Fondation pour la Recherche Médicale.

In addition to Boeke, Johns Hopkins scientists who contributed to the Nature study are Jessica S. Dymond, Sarah M. Richardson, Candice E. Coombes, Timothy Babatz, Joy Wu Schwerzmann, Héloïse Müller, Narayana Annaluru, Annabel C. Boeke, Junbiao Dai, Srinivasan Chandrasegaran, and Joel S. Bader.

Also, William J. Blake of Codon Devices; and Derek L. Lindstrom, and Daniel E. Gottschling of Fred Hutchinson Cancer Research Center.

On the Web:
Boeke lab:
Sc2.0 project:

Maryalice Yakutchik | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>