Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Swiss-Japanese Research Suggests Origins of Key Cells in the Thymus

31.05.2013
Medullary thymic epithelial cells (mTECs) allow the thymus to ensure that the body’s T cells are able to distinguish between potentially harmful foreign antigens and those that are produced by the body itself.

A Swiss-Japanese research team suggests that mTECs do not share a common progenitor with cortical-thymic TECs (cTECs) that produce T cells, but may actually evolve from them.

T-lymphocytes, or T cells, are a principal component of the body’s adaptive immune system. Together, these cells express a large repertoire of antigen specific receptors that recognise foreign material derived, for example, from pathogens and tumour cells. The generation of these antigen receptors occurs during T cell development in the thymus.

This constitutes, however, a random process that also includes the formation of antigen receptors which respond well to the body’s own proteins, so-called self-antigens. To prevent T cells bearing a self-reactive antigen receptor to exit from the thymus to the rest of the body where they may cause autoimmunity, a mechanism is in place that involves mTECs. These specialised thymic epithelial cells express most of the body’s self-antigens. T cells that recognise their specific antigen presented by mTECs will undergo a process of programmed cell death and are consequently deleted in the thymus.

Cross-Country Partnership

Very little is presently known about how cTECs and mTECs develop, or how they relate to each other. A Swiss-Japanese research team now reports that mTECs derive from cells that already express β5t, a proteasome subunit that is densely concentrated in cTECs and no other cell types, including mTECs themselves. This finding, which is published in the May 27-30, 2013 edition of PNAS, suggests that mTECs may evolve from cTECs. This finding has not only implications for how mTECs develop, but also how they may have evolved.

The research project was led in Switzerland by Prof. Georg Holländer, Professor of Paediatric Immunology at the University of Basel and Action Research Professor of Paediatrics at the University of Oxford. In Japan, the project was led by Prof. Yousuke Takahama of the Institute for Genome Research at the University of Tokushima, which initially discovered the β5t proteasome subunit. Dr. Izumi Ohigashi of the Institute for Genome Research at the University of Tokushima and Dr. Saulius Zuklys at the University Children’s Hospital of Basel serve as first authors.

Broad Potential

Professor Holländer believes that the benefits of a better understanding of the origins and functions of mTECs and cTECs extend well beyond basic research. The team’s findings suggest that evolutionary pressures have caused the body to check the quality of T cells that it produces. The T cell antigen receptor repertoire in evolutionary older species have a receptor, and did not require the body to implement quality control – but as the capacity developed to produce a seemingly infinite number of T cell antigen receptors the vital need to control their specificities has arisen. For this purpose the body may have “hijacked” existing cells, namely cTECs. Holländer also believes that the findings could inform attempts to reconstruct or develop in-vitro thymuses, which could in turn be used to help people who lack a normal thymus function because of inborn or acquired defects. “You can fix things if you know how they are formed in the first place,” he claims.

The research was supported by Grants-In-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology and the Japan Society for the Promotion of Science, and by a Strategic Japanese-Swiss Cooperative Program on Molecular Medical Research from the Japan Science and Technology Agency and the Federal Institute of Technology (ETH)-Zürich.

Original Citation

Izumi Ohigashi, Saulius Zuklys, Mie Sakata, Carlos E. Mayer, Saule Zhanybekova, Shigeo Murata, Keiji Tanaka, Georg Holländer, and Yousuke Takahama.
Aire-expressing thymic medullary epithelial cells originate from β5t-expressing progenitor cells.
Proceedings of the National Academy of Sciences of the United States of America, May 27-May 31, 2013. doi:10.1073/pnas.1301799110

Further Information

Professor Georg Holländer, Department of Biomedicine, University of Basel, Mattenstrasse 28 4058 Basel, Tel. +41 61 695 30 69, e-mail: georg-a.hollaender@unibas.ch

Professor Yousuke Takahama, Division of Experimental Immunology, Institute for Genome Research, University of Tokushima, 3-18-15 Kuramoto, Tokushima, Japan 770-8503 Tel. +81 88 633 9452, e-mail: takahama@genome.tokushima-u.ac.jp

Anne Zimmermann | Universität Basel
Further information:
http://www.pnas.org/content/early/2013/05/28/1301799110.abstract
http://biomedizin.unibas.ch/research/research-group-details/home/researchgroup/pediatric-immunology/

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>