Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Swelling Stacks

31.03.2014

Optical components made of multiresponsive microgels

“Intelligent” materials that can respond to external stimuli are high on the wish lists of many scientists because of their possible usefulness in various applications from sensors to microrobotics. Canadian researchers are working with polymer-based microgels that can swell and shrink.

In the journal Angewandte Chemie, they introduce tiny, stacked structures of microgels whose optical properties change in response to light, changes in pH value, or temperature. They can also detect nerve gases.

Gels are cross-linked molecules that can hold a liquid within their “loops”, which makes them swell up; microgels are "small" colloidally stable gel particles. The microgels being investigated by Michael J. Serpe and his team at the University of Alberta are swollen at temperatures below 32 °C; at higher temperatures they collapse and shrink.

The researchers used these materials to make small stacked structures called etalons: they enclosed a whisper-thin layer of microgel between two thin layers of gold. When the gel swells up, the two sheets of gold move farther apart, when it shrinks they get closer to each other. The optical properties of the stack change significantly as the distance between the gold layers changes, meaning that they “respond” to a change in temperature.

However, the goal is to make the gels react to other stimuli besides temperature. The researchers thus also incorporated triphenylmethane leucohydroxide (TPL) into their microgels. This substance is a true jack-of-all-trades that makes the microgels receptive to a variety of stimuli.

Now irradiation with red laser light, which is absorbed by the TPL, leads to a local rise in temperature within the microgel, which causes the distance between the gold layers to decrease. In contrast, irradiation with UV light excites the TPL molecules so that they dissociate into leuco cations and hydroxy anions. The charges of these ions cause the microgel to absorb additional water—increasing the distance between the gold layers.

These effects make the microgel stacks interesting for the production of adjustable optical components. Another possible application is for drug delivery with remote triggering: when a diseased area of the body is irradiated with high-wavelength light through the skin, the drug contained in the transporter can be released selectively in only the desired location.

The microgel also reacts to a change in pH value: an acidic pH causes the formation of leuco cations, whose positive charge causes the gel to swell by taking up water. If the pH is raised back up, the microgel shrinks. This could be used for the selective release of antitumor drugs because tumors often have a somewhat different pH value than the surrounding tissue.

Interestingly, organophosphates react with TPL molecules, also forming leuco cations. The resulting swelling of the microgel and changes in the optical properties of the stacks could be used for the quantitative detection of nerve gases like tabun.

About the Author

Dr. Michael J. Serpe is an Assistant Professor in the Department of Chemistry at the University of Alberta. His research is focused on using polymer-based materials for multiple applications; with a particular focus on developing novel point of care diagnostics, water remediation systems, and polymer-based muscles and actuators. He was recently named a Grand Challenges Canada Rising Star in Global Health, received the 2013 Petro Canada Young Innovator Award, and has been named one of Edmonton's Top 40 Under 40 by Avenue Magazine for 2013-2014.

Author: Michael J. Serpe, University of Alberta, Edmonton (Canada), http://www.chem.ualberta.ca/~serpe/Serpe_Group/Serpe_Group_Home.html

Title: Optical Devices Constructed from Multiresponsive Microgels

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201402641

Michael J. Serpe | Angewandte Chemie

Further reports about: gases materials microgels shrink skin stimuli structures temperature temperatures

More articles from Life Sciences:

nachricht Gasoline from a nanoreactor
01.04.2015 | Paul Scherrer Institut (PSI)

nachricht Lizard activity levels can help scientists predict environmental change
01.04.2015 | University of Missouri-Columbia

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lizard activity levels can help scientists predict environmental change

Research study provides new tools to assess warming temperatures

Spring is here and ectotherms, or animals dependent on external sources to raise their body temperature, are becoming more active. Recent studies have shown...

Im Focus: Hannover Messe 2015: Saving energy with smart façades

Glass-fronted office buildings are some of the biggest energy consumers, and regulating their temperature is a big job. Now a façade element developed by Fraunhofer researchers and designers for glass fronts is to reduce energy consumption by harnessing solar thermal energy. A demonstrator version will be on display at Hannover Messe.

In Germany, buildings account for almost 40 percent of all energy usage. Heating, cooling and ventilating homes, offices and public spaces is expensive – and...

Im Focus: Nonoxide ceramics open up new perspectives for the chemical and plant engineering

Outstanding chemical, thermal and tribological properties predestine silicon carbide for the production of ceramic components of high volume. A novel method now overcomes the procedural and technical limitations of conventional design methods for the production of components with large differences in wall thickness and demanding undercuts.

Extremely hard as diamond, shrinking-free manufacturing, resistance to chemicals, wear and temperatures up to 1300 °C: Silicon carbide (SiSiC) bundles all...

Im Focus: Experiment Provides the Best Look Yet at 'Warm Dense Matter' at Cores of Giant Planets

In an experiment at the Department of Energy's SLAC National Accelerator Laboratory, scientists precisely measured the temperature and structure of aluminum as...

Im Focus: Energy-autonomous and wireless monitoring protects marine gearboxes

The IPH presents a solution at HANNOVER MESSE 2015 to make ship traffic more reliable while decreasing the maintenance costs at the same time. In cooperation with project partners, the research institute from Hannover, Germany, has developed a sensor system which continuously monitors the condition of the marine gearbox, thus preventing breakdowns. Special feature: the monitoring system works wirelessly and energy-autonomously. The required electrical power is generated where it is needed – directly at the sensor.

As well as cars need to be certified regularly (in Germany by the TÜV – Technical Inspection Association), ships need to be inspected – if the powertrain stops...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

10. CeBiTec Symposium zum Big Data-Problem

17.03.2015 | Event News

 
Latest News

Gasoline from a nanoreactor

01.04.2015 | Life Sciences

Saving costs with antifouling coatings

01.04.2015 | Process Engineering

Diversity prevents resistance

01.04.2015 | Agricultural and Forestry Science

VideoLinks
B2B-VideoLinks
More VideoLinks >>>