Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Swelling Stacks

31.03.2014

Optical components made of multiresponsive microgels

“Intelligent” materials that can respond to external stimuli are high on the wish lists of many scientists because of their possible usefulness in various applications from sensors to microrobotics. Canadian researchers are working with polymer-based microgels that can swell and shrink.

In the journal Angewandte Chemie, they introduce tiny, stacked structures of microgels whose optical properties change in response to light, changes in pH value, or temperature. They can also detect nerve gases.

Gels are cross-linked molecules that can hold a liquid within their “loops”, which makes them swell up; microgels are "small" colloidally stable gel particles. The microgels being investigated by Michael J. Serpe and his team at the University of Alberta are swollen at temperatures below 32 °C; at higher temperatures they collapse and shrink.

The researchers used these materials to make small stacked structures called etalons: they enclosed a whisper-thin layer of microgel between two thin layers of gold. When the gel swells up, the two sheets of gold move farther apart, when it shrinks they get closer to each other. The optical properties of the stack change significantly as the distance between the gold layers changes, meaning that they “respond” to a change in temperature.

However, the goal is to make the gels react to other stimuli besides temperature. The researchers thus also incorporated triphenylmethane leucohydroxide (TPL) into their microgels. This substance is a true jack-of-all-trades that makes the microgels receptive to a variety of stimuli.

Now irradiation with red laser light, which is absorbed by the TPL, leads to a local rise in temperature within the microgel, which causes the distance between the gold layers to decrease. In contrast, irradiation with UV light excites the TPL molecules so that they dissociate into leuco cations and hydroxy anions. The charges of these ions cause the microgel to absorb additional water—increasing the distance between the gold layers.

These effects make the microgel stacks interesting for the production of adjustable optical components. Another possible application is for drug delivery with remote triggering: when a diseased area of the body is irradiated with high-wavelength light through the skin, the drug contained in the transporter can be released selectively in only the desired location.

The microgel also reacts to a change in pH value: an acidic pH causes the formation of leuco cations, whose positive charge causes the gel to swell by taking up water. If the pH is raised back up, the microgel shrinks. This could be used for the selective release of antitumor drugs because tumors often have a somewhat different pH value than the surrounding tissue.

Interestingly, organophosphates react with TPL molecules, also forming leuco cations. The resulting swelling of the microgel and changes in the optical properties of the stacks could be used for the quantitative detection of nerve gases like tabun.

About the Author

Dr. Michael J. Serpe is an Assistant Professor in the Department of Chemistry at the University of Alberta. His research is focused on using polymer-based materials for multiple applications; with a particular focus on developing novel point of care diagnostics, water remediation systems, and polymer-based muscles and actuators. He was recently named a Grand Challenges Canada Rising Star in Global Health, received the 2013 Petro Canada Young Innovator Award, and has been named one of Edmonton's Top 40 Under 40 by Avenue Magazine for 2013-2014.

Author: Michael J. Serpe, University of Alberta, Edmonton (Canada), http://www.chem.ualberta.ca/~serpe/Serpe_Group/Serpe_Group_Home.html

Title: Optical Devices Constructed from Multiresponsive Microgels

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201402641

Michael J. Serpe | Angewandte Chemie

Further reports about: gases materials microgels shrink skin stimuli structures temperature temperatures

More articles from Life Sciences:

nachricht Flavins keep a handy helper in their pocket
25.04.2018 | University of Freiburg

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>