Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sweet! -- sugar plays key role in cell division

08.02.2010
Using an elaborate sleuthing system they developed to probe how cells manage their own division, Johns Hopkins scientists have discovered that common but hard-to-see sugar switches are partly in control.

Because these previously unrecognized sugar switches are so abundant and potential targets of manipulation by drugs, the discovery of their role has implications for new treatments for a number of diseases, including cancer, the scientists say.

In the January 12 edition of Science Signaling, the team reported that it focused efforts on the apparatus that enables a human cell to split into two, a complicated biochemical machine involving hundreds of proteins. Conventional wisdom was that the job of turning these proteins on and off — thus determining if, how and when a cell divides — fell to phosphates, chemical compounds containing the element phosphorus, which fasten to and unfasten from proteins in a process called phosphorylation.

Instead, the Johns Hopkins scientists say, there is another layer of regulation by a process of sugar-based protein modification called O-GlcNAcylation (pronounced O-glick-NAC-alation). "This sugar-based system seems as influential and ubiquitous a cell-division signaling pathway as its phosphate counterpart and, indeed, even plays a role in regulating phosphorylation itself," says Chad Slawson, Ph.D., an author of the paper and research associate in the Department of Biological Chemistry, Johns Hopkins University School of Medicine.

Because the sugar molecule has some novel qualities — it is small, easily altered, and without an electrical charge — it is virtually imperceptible to researchers using standard physical techniques of detection such as mass spectrometry.

Suspecting that the sugar known as O-GlcNAc might play a role in cell division, the Hopkins team devised a protein-mapping scheme using new mass spectrometric methods. Essentially, they applied a combination of chemical modification and enrichment methods, and new fragmentation technology to proteins that comprise the cell division machinery in order to figure out and analyze their molecular makeup, identifying more than 150 sites where the sugar molecule known as O-GlcNAc was attached. Phosphates were found to be attached at more than 300 sites.

They noticed that when an O-GlcNAc molecule was located near a phosphate site, or at the same site, it prevented the phosphate from attaching. The proteins involved in cell division weren't phosphorylated and activated until O-GlcNAc detached.

"I think of phosphorylation as a micro-switch that regulates the circuitry of cell division, and O-GlcNAcylation as the safety switch that regulates the microswitches," says Gerald Hart, Ph.D., the DeLamar Professor and director of biological chemistry at the Johns Hopkins School of Medicine.

Using a standard human cell line (HeLa cells), the scientists discovered abnormalities when they disrupted the cell division process by adding extra O-GlcNAc. Although the cell's chromosome-containing nuclei divided normally, the cells themselves didn't divide, resulting in too many nuclei per cell — a condition known as polyploidy that's exhibited by many cancer cells.

The researchers not only mapped O-GlcNAc and phosphorylation sites but also measured changes in the cell division machinery, because, Hart says, the chemical changes act more like "dimmer" switches, than simple on/off ones.

As important as the discovery is to a deeper understanding of cell division, Hart says, this extensive cross talk between O-GlcNAc and phosphorylation is paradigm-shifting in terms of signaling. Signaling is how a cell perceives its environment, and how it regulates its machinery in response to stimuli. The new sugar switches reveal that the cellular circuitry is much more complex than previously thought, he adds.

The research was funded by the National Institutes of Health.

Johns Hopkins authors on the paper are Zihao Wang, Chad Slawson, Kaoru Sakabe, Win D. Cheung and Gerald W. Hart. Other authors are Namrata D. Udeshi, Philip D. Compton, Jeffrey Shabanowitz and Donald F. Hunt, all of the University of Virginia.

On the Web:
http://biolchem.bs.jhmi.edu/pages/facultydetail.aspx?AspXPage=g%5FA13E315C00C04DFD949FD3E57BA45181:ID%3D83

http://stke.sciencemag.org/

Maryalice Yakutchik | EurekAlert!
Further information:
http://www.jhmi.edu

Further reports about: Medicine O-GlcNAc O-GlcNAcylation cell division human cell proteins sweet

More articles from Life Sciences:

nachricht New technology offers fast peptide synthesis
28.02.2017 | Massachusetts Institute of Technology

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New technology offers fast peptide synthesis

28.02.2017 | Life Sciences

WSU research advances energy savings for oil, gas industries

28.02.2017 | Power and Electrical Engineering

Who can find the fish that makes the best sound?

28.02.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>