Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sweet! -- sugar plays key role in cell division

08.02.2010
Using an elaborate sleuthing system they developed to probe how cells manage their own division, Johns Hopkins scientists have discovered that common but hard-to-see sugar switches are partly in control.

Because these previously unrecognized sugar switches are so abundant and potential targets of manipulation by drugs, the discovery of their role has implications for new treatments for a number of diseases, including cancer, the scientists say.

In the January 12 edition of Science Signaling, the team reported that it focused efforts on the apparatus that enables a human cell to split into two, a complicated biochemical machine involving hundreds of proteins. Conventional wisdom was that the job of turning these proteins on and off — thus determining if, how and when a cell divides — fell to phosphates, chemical compounds containing the element phosphorus, which fasten to and unfasten from proteins in a process called phosphorylation.

Instead, the Johns Hopkins scientists say, there is another layer of regulation by a process of sugar-based protein modification called O-GlcNAcylation (pronounced O-glick-NAC-alation). "This sugar-based system seems as influential and ubiquitous a cell-division signaling pathway as its phosphate counterpart and, indeed, even plays a role in regulating phosphorylation itself," says Chad Slawson, Ph.D., an author of the paper and research associate in the Department of Biological Chemistry, Johns Hopkins University School of Medicine.

Because the sugar molecule has some novel qualities — it is small, easily altered, and without an electrical charge — it is virtually imperceptible to researchers using standard physical techniques of detection such as mass spectrometry.

Suspecting that the sugar known as O-GlcNAc might play a role in cell division, the Hopkins team devised a protein-mapping scheme using new mass spectrometric methods. Essentially, they applied a combination of chemical modification and enrichment methods, and new fragmentation technology to proteins that comprise the cell division machinery in order to figure out and analyze their molecular makeup, identifying more than 150 sites where the sugar molecule known as O-GlcNAc was attached. Phosphates were found to be attached at more than 300 sites.

They noticed that when an O-GlcNAc molecule was located near a phosphate site, or at the same site, it prevented the phosphate from attaching. The proteins involved in cell division weren't phosphorylated and activated until O-GlcNAc detached.

"I think of phosphorylation as a micro-switch that regulates the circuitry of cell division, and O-GlcNAcylation as the safety switch that regulates the microswitches," says Gerald Hart, Ph.D., the DeLamar Professor and director of biological chemistry at the Johns Hopkins School of Medicine.

Using a standard human cell line (HeLa cells), the scientists discovered abnormalities when they disrupted the cell division process by adding extra O-GlcNAc. Although the cell's chromosome-containing nuclei divided normally, the cells themselves didn't divide, resulting in too many nuclei per cell — a condition known as polyploidy that's exhibited by many cancer cells.

The researchers not only mapped O-GlcNAc and phosphorylation sites but also measured changes in the cell division machinery, because, Hart says, the chemical changes act more like "dimmer" switches, than simple on/off ones.

As important as the discovery is to a deeper understanding of cell division, Hart says, this extensive cross talk between O-GlcNAc and phosphorylation is paradigm-shifting in terms of signaling. Signaling is how a cell perceives its environment, and how it regulates its machinery in response to stimuli. The new sugar switches reveal that the cellular circuitry is much more complex than previously thought, he adds.

The research was funded by the National Institutes of Health.

Johns Hopkins authors on the paper are Zihao Wang, Chad Slawson, Kaoru Sakabe, Win D. Cheung and Gerald W. Hart. Other authors are Namrata D. Udeshi, Philip D. Compton, Jeffrey Shabanowitz and Donald F. Hunt, all of the University of Virginia.

On the Web:
http://biolchem.bs.jhmi.edu/pages/facultydetail.aspx?AspXPage=g%5FA13E315C00C04DFD949FD3E57BA45181:ID%3D83

http://stke.sciencemag.org/

Maryalice Yakutchik | EurekAlert!
Further information:
http://www.jhmi.edu

Further reports about: Medicine O-GlcNAc O-GlcNAcylation cell division human cell proteins sweet

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>