Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Swarming insect provides clues to how the brain processes smells

26.11.2013
Our sense of smell is often the first response to environmental stimuli. Odors trigger neurons in the brain that alert us to take action. However, there is often more than one odor in the environment, such as in coffee shops or grocery stores. How does our brain process multiple odors received simultaneously?

Barani Raman, PhD, of the School of Engineering & Applied Science at Washington University in St. Louis, set out to find an answer. Using locusts, which have a relatively simple sensory system ideal for studying brain activity, he found the odors prompted neural activity in the brain that allowed the locust to correctly identify the stimulus, even with other odors present.

The results were published in Nature Neuroscience as the cover story of the December 2013 print issue.

The team uses a computer-controlled pneumatic pump to administer an odor puff to the locust, which has olfactory receptor neurons in its antennae, similar to sensory neurons in our nose. A few seconds after the odor puff is given, the locust gets a piece of grass as a reward, as a form of Pavlovian conditioning. As with Pavlov's dog, which salivated when it heard a bell ring, trained locusts anticipate the reward when the odor used for training is delivered.

Instead of salivating, they open their palps, or finger-like projections close to the mouthparts, when they predict the reward. Their response was less than half of a second. The locusts could recognize the trained odors even when another odor meant to distract them was introduced prior to the target cue.

"We were expecting this result, but the speed with which it was done was surprising," says Raman, assistant professor of biomedical engineering. "It took only a few hundred milliseconds for the locust's brain to begin tracking a novel odor introduced in its surrounding. The locusts are processing chemical cues in an extremely rapid fashion."

"There were some interesting cues in the odors we chose," Raman says. "Geraniol, which smells like rose to us, was an attractant to the locusts, but citral, which smells like lemon to us, is a repellant to them. This helped us identify principles that are common to the odor processing.

Raman has spent a decade learning how the human brain and olfactory system operate to process scent and odor signals. His research seeks to take inspiration from the biological olfactory system to develop a device for noninvasive chemical sensing. Such a device could be used in homeland security applications to detect volatile chemicals and in medical diagnostics, such as a device to test blood-alcohol level.

This study is the first in a series seeking to understand the principles of olfactory computation, Raman says.

"There is a precursory cue that could tell the brain there is a predator in the environment, and it has to predict what will happen next," Raman says. "We want to determine what kinds of computations have to be done to make those predictions."

In addition, the team is looking to answer other questions.

"Neural activity in the early processing centers does not terminate until you stop the odor pulse," he says. "If you have a lengthy pulse – 5 or 10 seconds long – what is the role of neural activity that persists throughout the stimulus duration and often even after you terminate the stimulus? What are the roles of the neural activity generated at different points in time, and how do they help the system adapt to the environment? Those questions are still not clear."

The School of Engineering & Applied Science at Washington University in St. Louis focuses intellectual efforts through a new convergence paradigm and builds on strengths, particularly as applied to medicine and health, energy and environment, entrepreneurship and security. With 82 tenured/tenure-track and 40 additional full-time faculty, 1,300 undergraduate students, 700 graduate students and more than 23,000 alumni, we are working to leverage our partnerships with academic and industry partners — across disciplines and across the world — to contribute to solving the greatest global challenges of the 21st century.

Saha D, Leong K, Li C, Peterson S, Siegel G, Raman B. A spatiotemporal coding mechanism for background-invariant odor recognition. Nature Neuroscience. Advance online publication Nov. 3, 2013; December 2013 print edition (Volume 16 No. 12 pp1709-1908).

Funding for this research was provided by the McDonnell Center for System Neuroscience and the Department of Biomedical Engineering at Washington University and the Office of Naval Research of the U.S. Department of Defense.

Neil Schoenherr | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Global threat to primates concerns us all

19.01.2017 | Ecology, The Environment and Conservation

Scientist from Kiel University coordinates Million Euros Project in Inflammation Research

19.01.2017 | Awards Funding

The Great Unknown: Risk-Taking Behavior in Adolescents

19.01.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>