Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Swamping bad cells with good in ALS animal models helps sustain breathing

21.10.2008
Targeted cell delivery to the cervical spinal cord is a promising strategy to slow loss of motor neurons in ALS

In a disease like ALS - one that's always fatal and that has a long history of research-resistant biology - finding a proof of principle in animal models is significant.

This week, Johns Hopkins researchers report that transplanting a new line of stem cell-like cells into rat models of the disease clearly shifts key signs of neurodegenerative disease in general and ALS in particular - slowing the animals' neuron loss and extending life.

The new work supports the hypothesis that artificially outnumbering unhealthy cells with healthy ones in targeted parts of the spinal cord preserves limb strength and breathing and can increase survival.

An account of the work appears online this week in Nature Neuroscience.

Two parts of the study hold special interest: One is that the target area for the added cells - parts of the cervical spinal cord that control the diaphragm muscles largely responsible for breathing - reap the most benefit. Forty-seven percent more motor neurons survived there than in untreated model animals. Respiratory failure from diaphragm weakness is the usual cause of death in ALS, also called Lou Gehrig's disease.

"While the added cells, in the long run, didn't save all of the nerves to the diaphragm, they did maintain its nerve's ability to function and stave off death significantly longer," says neuroscientist Nicholas Maragakis, M.D., an associate professor of neurology at Johns Hopkins who led the research team.

"We intentionally targeted the motor neurons in this region," he says, "since we knew that, as in ALS, their death results in respiratory decline."

Also significant is that the transplanted cells, called glial restricted precursors (GRPs), address a well-known flaw in people with ALS and in its animal models. Both humans and models are stunted in their ability to clear away the neurotransmitter glutamate. And excess glutamate - common in ALS - overstimulates the motor neurons that spark muscle movement, causing death. The event, called excitotoxicity, also occurs in other neurological diseases.

So on a more basic level, the study adds clout to the principle - in live animals - that excitotoxicity is a major bad guy in ALS and that finding more effective ways to avoid or lessen it could help protect the nervous system.

In their research, the team transplanted some 900,000 glial restricted precursors overall to specific sites in the cervical spinal cord of each model rat in early stages of disease. The GRPs the scientists used began life as what's called astrocyte progenitor cells from healthy rat spinal cord tissue. Following transplant, they transformed into mature, healthy astrocytes, found living alongside sick motor neurons.

Astrocytes are the most common cells in the central nervous system. Work at Johns Hopkins and elsewhere has shown their crucial role in keeping the CNS in healthy balance. Not only are the cells studded with transporter molecules that mop up glutamate; they also maintain proper ion levels and nutrient support of nerve cells.

The study showed that at least a third of the added GRPs "took root" after their transplantation. With time, almost 90 percent of the GRPs had differentiated into astrocytes. Unlike the model rats' own astrocytes, the new ones continued to appear healthy. None of the GRPs damaged the spinal cord or formed tumors - a worry with some stem cell therapies.

Transplanting alternate GRPs - those that the team engineered to lack glutamate transporters - offered none of the protective properties.

"Our findings demonstrate that astrocyte replacement, by transplantation, is both possible and useful," Maragakis explains. "This targeted cell delivery to the cervical spinal cord is a promising strategy to slow that loss of motor neurons in ALS. We hope at some point that these principles will translate to the clinic."

Earlier research by U.S. scientists suggests that, while astrocytes go downhill in ALS, they may not be a primary cause of the disease. The idea is more that they're involved in its progression. Diseased astrocytes, studies show, may make motor neurons more susceptible to death by excitotoxicity.

Maryalice Yakutchik | EurekAlert!
Further information:
http://www.jhmi.edu
http://www.alscenter.org/

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>