Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Swamping bad cells with good in ALS animal models helps sustain breathing

21.10.2008
Targeted cell delivery to the cervical spinal cord is a promising strategy to slow loss of motor neurons in ALS

In a disease like ALS - one that's always fatal and that has a long history of research-resistant biology - finding a proof of principle in animal models is significant.

This week, Johns Hopkins researchers report that transplanting a new line of stem cell-like cells into rat models of the disease clearly shifts key signs of neurodegenerative disease in general and ALS in particular - slowing the animals' neuron loss and extending life.

The new work supports the hypothesis that artificially outnumbering unhealthy cells with healthy ones in targeted parts of the spinal cord preserves limb strength and breathing and can increase survival.

An account of the work appears online this week in Nature Neuroscience.

Two parts of the study hold special interest: One is that the target area for the added cells - parts of the cervical spinal cord that control the diaphragm muscles largely responsible for breathing - reap the most benefit. Forty-seven percent more motor neurons survived there than in untreated model animals. Respiratory failure from diaphragm weakness is the usual cause of death in ALS, also called Lou Gehrig's disease.

"While the added cells, in the long run, didn't save all of the nerves to the diaphragm, they did maintain its nerve's ability to function and stave off death significantly longer," says neuroscientist Nicholas Maragakis, M.D., an associate professor of neurology at Johns Hopkins who led the research team.

"We intentionally targeted the motor neurons in this region," he says, "since we knew that, as in ALS, their death results in respiratory decline."

Also significant is that the transplanted cells, called glial restricted precursors (GRPs), address a well-known flaw in people with ALS and in its animal models. Both humans and models are stunted in their ability to clear away the neurotransmitter glutamate. And excess glutamate - common in ALS - overstimulates the motor neurons that spark muscle movement, causing death. The event, called excitotoxicity, also occurs in other neurological diseases.

So on a more basic level, the study adds clout to the principle - in live animals - that excitotoxicity is a major bad guy in ALS and that finding more effective ways to avoid or lessen it could help protect the nervous system.

In their research, the team transplanted some 900,000 glial restricted precursors overall to specific sites in the cervical spinal cord of each model rat in early stages of disease. The GRPs the scientists used began life as what's called astrocyte progenitor cells from healthy rat spinal cord tissue. Following transplant, they transformed into mature, healthy astrocytes, found living alongside sick motor neurons.

Astrocytes are the most common cells in the central nervous system. Work at Johns Hopkins and elsewhere has shown their crucial role in keeping the CNS in healthy balance. Not only are the cells studded with transporter molecules that mop up glutamate; they also maintain proper ion levels and nutrient support of nerve cells.

The study showed that at least a third of the added GRPs "took root" after their transplantation. With time, almost 90 percent of the GRPs had differentiated into astrocytes. Unlike the model rats' own astrocytes, the new ones continued to appear healthy. None of the GRPs damaged the spinal cord or formed tumors - a worry with some stem cell therapies.

Transplanting alternate GRPs - those that the team engineered to lack glutamate transporters - offered none of the protective properties.

"Our findings demonstrate that astrocyte replacement, by transplantation, is both possible and useful," Maragakis explains. "This targeted cell delivery to the cervical spinal cord is a promising strategy to slow that loss of motor neurons in ALS. We hope at some point that these principles will translate to the clinic."

Earlier research by U.S. scientists suggests that, while astrocytes go downhill in ALS, they may not be a primary cause of the disease. The idea is more that they're involved in its progression. Diseased astrocytes, studies show, may make motor neurons more susceptible to death by excitotoxicity.

Maryalice Yakutchik | EurekAlert!
Further information:
http://www.jhmi.edu
http://www.alscenter.org/

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>