Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Possible susceptibility genes found in neurodegenerative disorder

20.06.2011
An international research team, co-led by scientists at Mayo Clinic's campus in Florida, have discovered three potential susceptibility genes for development of progressive supranuclear palsy (PSP), a rare neurodegenerative disease that causes symptoms similar to those of Parkinson's disease but is resistant to Parkinson's medications. Their report is being published online June 19 in Nature Genetics.

The findings provide a "testable translational hypothesis" as to the development and progression of PSP and may also provide clues into other more common brain disorders brought about by accumulation of tau protein in the brain, researchers say. Those "tauopathies" include some forms of Parkinson's disease, frontotemporal dementia, Alzheimer's disease, and other disorders.

"These are promising gene candidates that may help us understand and potentially treat PSP," says neuropathologist Dennis W. Dickson, M.D., a study co-lead author. "While these findings are surprisingly robust, we are still at the very earliest stages of this work. These are excellent candidate genes, but we have to make sure they are true susceptibility genes."

With 29 institutions represented from the United States and Europe, the study is one of the largest international collaborations to date researching PSP, Dr. Dickson says. It is also one of the largest reports on a pathologically confirmed neurological disorder.

Mayo Clinic's contribution was pivotal, he says. With its focus on movement disorders, Mayo Clinic in Florida is a national center for referral of patients with PSP for diagnosis, treatment, and research. It also has the world's largest collection of brain tissue from PSP patients. The 10-year-old Society for Progressive Supranuclear Palsy Brain Bank, established by Dr. Dickson, contains tissue samples from more than 800 patients with PSP. Medical institutions around the country routinely send autopsy tissues to the Mayo PSP brain bank.

Mayo Clinic contributed over 600 of the 1,114 PSP DNA samples used in the first half of the study; the other international institutions contributed the rest.

To search for susceptibility genes, the research team conducted a genome-wide association study (GWAS), which examines the differences between the genomes of patients with a certain disease compared to a control group of participants without the disease. This is done by looking at single nucleotide polymorphisms (SNPs, pronounced snips), which are DNA sequence variations that can occur in genes or in the non-coding regions between genes.

Researchers first assessed association between genotypes at 531,451 SNPs in the group of 1,114 PSP DNA samples, and in blood from a control group of 3,247 participants who did not have PSP. The SNPs "hits" they found were then tested in a second group: blood samples from 1,051 living PSP patients and blood from a second group of 3,560 control participants. For that phase of the study, Mayo Clinic in Florida contributed blood from about 200 PSP patients.

In addition to finding that PSP patients had variants in their tau gene, which was expected, the researchers also found the three SNPs that appear to be candidate PSP genes. All three have neurological functions. MOBP is a protein associated with myelin, an insulating material that forms a sheath around the axon of nerves. Glial cells form myelin, and these cells are affected in PSP. STX6 is a gene involved in recycling the membrane of a neuron, and membrane recycling has been implicated in a number of neurodegenerative diseases, including Alzheimer's, according to Dr. Dickson. The third gene, EIF2AK3, is involved in translating RNA to protein, and it signals cells to stop making proteins when abnormal proteins start to accumulate inside cells — as they do in neurons when tau errantly builds up.

Variants in these three genes were also found in the two control populations, but were significantly higher in the PSP patients (both brain samples and PSP blood samples). That suggests these genes do not cause PSP, but contribute to a person's susceptibility to the disease, he says.

"We don't know for sure that these SNPs are precisely at these gene locations," says Dr. Dickson. "If they are real PSP susceptibility genes, we can then zero in on variants that have an impact on the disease, which might then be exploited therapeutically.

"While we are a long way from any new treatment, this new research is exciting for researchers who are dedicated to understanding this tragic disorder."

PSP affects up to 50,000 people in the United States at any given time. It is one-tenth as common as Parkinson's disease.

Also working on this study were neurologists Zbigniew Wszolek, M.D., and Ryan Uitti, M.D., from Mayo Clinic in Florida. The study's co-lead authors are at Philipps-Universität, Marburg, Germany; the University of Pittsburgh School of Medicine; the Children's Hospital of Philadelphia; Justus-Liebig-Universität in Giessen, Germany; and the University of Pennsylvania School of Medicine.

The study was funded by CurePSP/The Society for Progressive Supranuclear Palsy. The Mayo Clinic authors declare no conflicts of interest.

About Mayo Clinic Mayo Clinic is a nonprofit worldwide leader in medical care, research and education for people from all walks of life. For more information, visit www.mayoclinic.org/about/ and www.mayoclinic.org/news.

Kevin Punsky | EurekAlert!
Further information:
http://www.mayo.edu

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>