Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Survival Molecule Helps Cancer Cells Hide From the Immune System

08.10.2014
  • The immune system has mechanisms for detecting and destroying cancer cells.
  • A molecule that helps cancer cells survive genetic damage might also help malignant cells avoid being killed by the immune system.
  • The findings could improve the effectiveness of immune therapies for cancer.

A molecule that helps cancer cells evade programmed self-destruction, an internal source of death, might also help malignant cells hide from the immune system, an external source of death. 

A new study by researchers at The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC – James) shows that a molecule called nuclear factor kappa B (NF-kB) helps cancer cells by suppressing the immune system’s ability to detect and destroy them.

The molecule regulates genes that suppress immune surveillance mechanisms, including the production of cells that inhibit the immune response. 

The research suggests that immune therapy for cancer might be more effective if combined with drugs that inhibit NF-kB. They also provide new details about how interactions between cancer cells and noncancer cells assist tumor growth. 

The findings are published in the journal Cell Reports. 

“We’ve long known that NF-kB promotes cancer development by subverting apoptosis, an internal safety mechanism that otherwise would cause cancer cells to self-destruct,” says principal investigator Denis Guttridge, PhD, professor of molecular virology, immunology and medical genetics and of molecular and cellular biochemistry. 

“This study shows that NF-kB might coordinate a network of immune-suppressor genes whose products enable tumor cells to evade adaptive immunity,” he adds. “Therefore, inhibiting NF-kB will might make tumor cells more vulnerable to elimination by the immune system.” 

A 2009 study by the same researchers showed that NF-kB helps normal cells in DNA repair, which may prevent them from harming the body. However, it is hard to understand why such a molecule might act differently in cancer cells, where NF-kB is typically always in an active state. 

For this study, Guttridge, first author David J. Wang, who developed many of the study’s concepts, and their colleagues monitored NF-kB activity during tumor development using mouse embryonic fibroblasts and two mouse models. Key technical findings include:

  • During early tumor development, macrophages – innate immune cells – migrate into the tumor;

  • NF-kB enables cancer cells to survive the pro-apoptotic influence of tumor necrosis factor that is released by tumor infiltrating macrophages;

  • NF-kB may also regulate a number of genes related to immune suppression, particularly TGF-beta, IL-10, GM-CSF, G-CSF and VEGF.

  • In cancer cells with active NF-kB, shutting down TGF-beta expression removed its immune suppressive influence and delayed tumor growth, evidence that TGF-beta is a gene regulated by NF-kB that contributes to tumor development.

“Overall, our findings demonstrate that NF-kB might play a pivotal role in enabling cells to evade surveillance by both innate and adaptive immune cells,” Guttridge says.

 

Funding from the NIH/National Cancer Institute (grant CA140158) supported this research. 

Other Ohio State researchers involved in this study were Nivedita M. Ratnam and John C. Byrd. 

The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute strives to create a cancer-free world by integrating scientific research with excellence in education and patient-centered care, a strategy that leads to better methods of prevention, detection and treatment. Ohio State is one of only 41 National Cancer Institute (NCI)-designated Comprehensive Cancer Centers and one of only four centers funded by the NCI to conduct both phase I and phase II clinical trials. The NCI recently rated Ohio State’s cancer program as “exceptional,” the highest rating given by NCI survey teams. As the cancer program’s 228-bed adult patient-care component, The James is a “Top Hospital” as named by the Leapfrog Group and one of the top cancer hospitals in the nation as ranked by U.S.News & World Report.

 

###

 

A high quality JPEG of Denis Guttridge, PhD, is available here.

 

Contact: Darrell E. Ward, Wexner Medical Center Public Affairs and Media Relations,

614-293-3737, or Darrell.Ward@osumc.edu

Darrell E. Ward | Eurek Alert!
Further information:
http://cancer.osu.edu/mediaroom/releases/Pages/Survival-Molecule-Helps-Cancer-Cells-Hide-From-the-Immune-System.aspx

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>