Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Supercomputer reveals new details behind drug-processing protein model

Supercomputer simulations at the Department of Energy's Oak Ridge National Laboratory are giving scientists unprecedented access to a key class of proteins involved in drug detoxification.

Jerome Baudry and Yinglong Miao, who are jointly affiliated with ORNL and the University of Tennessee, have performed simulations to observe the motions of water molecules in a class of enzymes called P450s. Certain types of P450 are responsible for processing a large fraction of drugs taken by humans.

The supercomputer simulations were designed to help interpret ongoing neutron experiments.

"We simulated what happens in this enzyme over a time scale of 0.3 microseconds, which sounds very fast, but from a scientific point of view, it's a relatively long time," Baudry said. "A lot of things happen at this scale that had never been seen before. It's a computational tour de force to be able to follow that many water molecules for that long."

The team's study of the water molecules' movements contributes to a broader understanding of drug processing by P450 enzymes. Because some populations have a slightly different version of the enzymes, scientists hypothesize that mutations could partially explain why people respond differently to the same drug. One possibility is that the mutations might shut down the channels that bring water molecules in and out of the enzyme's active site, where the chemical modification of drugs takes place. This could be investigated by using the computational tools developed for this research.

By simulating how water molecules move in and out of the protein's centrally located active site, the team clarified an apparent contradiction between experimental evidence and theory that had previously puzzled researchers. X-ray crystallography, which provides a static snapshot of the protein, had shown only six water molecules present in the active site, whereas experimental observations indicated a higher number of water molecules would be present in the enzyme.

"We found that even though there can be many water molecules -- up to 12 at a given time that get in and out very quickly -- if you look at the average, those water molecules prefer to be at a certain location that corresponds to what you see in the crystal structure," Miao said. "It's a very dynamic hydration process that we are exploring with a combination of neutron scattering experiments and simulation."

The simulation research is published in Biophysical Journal as "Active-Site Hydration and Water Diffusion in Cytochrome P450cam: A Highly Dynamic Process."

The team was supported by an Experimental Program to Stimulate Competitive Research (EPSCOR) grant from the DOE Office of Science and funding from the University of Tennessee. Computing time on the Kraken supercomputer was supported by a National Science Foundation TeraGrid award.

ORNL is managed by UT-Battelle for the Department of Energy's Office of Science.

Morgan McCorkle | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>