Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Supercomputer reveals new details behind drug-processing protein model

07.12.2011
Supercomputer simulations at the Department of Energy's Oak Ridge National Laboratory are giving scientists unprecedented access to a key class of proteins involved in drug detoxification.

Jerome Baudry and Yinglong Miao, who are jointly affiliated with ORNL and the University of Tennessee, have performed simulations to observe the motions of water molecules in a class of enzymes called P450s. Certain types of P450 are responsible for processing a large fraction of drugs taken by humans.

The supercomputer simulations were designed to help interpret ongoing neutron experiments.

"We simulated what happens in this enzyme over a time scale of 0.3 microseconds, which sounds very fast, but from a scientific point of view, it's a relatively long time," Baudry said. "A lot of things happen at this scale that had never been seen before. It's a computational tour de force to be able to follow that many water molecules for that long."

The team's study of the water molecules' movements contributes to a broader understanding of drug processing by P450 enzymes. Because some populations have a slightly different version of the enzymes, scientists hypothesize that mutations could partially explain why people respond differently to the same drug. One possibility is that the mutations might shut down the channels that bring water molecules in and out of the enzyme's active site, where the chemical modification of drugs takes place. This could be investigated by using the computational tools developed for this research.

By simulating how water molecules move in and out of the protein's centrally located active site, the team clarified an apparent contradiction between experimental evidence and theory that had previously puzzled researchers. X-ray crystallography, which provides a static snapshot of the protein, had shown only six water molecules present in the active site, whereas experimental observations indicated a higher number of water molecules would be present in the enzyme.

"We found that even though there can be many water molecules -- up to 12 at a given time that get in and out very quickly -- if you look at the average, those water molecules prefer to be at a certain location that corresponds to what you see in the crystal structure," Miao said. "It's a very dynamic hydration process that we are exploring with a combination of neutron scattering experiments and simulation."

The simulation research is published in Biophysical Journal as "Active-Site Hydration and Water Diffusion in Cytochrome P450cam: A Highly Dynamic Process."

The team was supported by an Experimental Program to Stimulate Competitive Research (EPSCOR) grant from the DOE Office of Science and funding from the University of Tennessee. Computing time on the Kraken supercomputer was supported by a National Science Foundation TeraGrid award.

ORNL is managed by UT-Battelle for the Department of Energy's Office of Science.

Morgan McCorkle | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>