Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Superbug complicates treatment of infections in cystic fibrosis

19.03.2009
The unexpected behaviour of a family of "superbugs" called the Burkholderia cepacia complex (Bcc) could have implications for the treatment of cystic fibrosis (CF) patients.

CF patients produce large quantities of sticky mucus in their lungs that is difficult to expel and is easily infected by bacteria. A recent treatment for CF, inhalation of a sugar called mannitol, works by attracting moisture into the lungs.

This thins the mucus making it easier to disperse. However, recent research by Professor John Govan and colleagues at the University of Edinburgh, published in the journal Microbiology has shown that when Bcc bacteria are grown on mannitol they produce a sticky substance called exopolysaccharide (EPS) which could contribute to the very problem that the mannitol therapy was designed to solve.

Infections caused by slime-producing bacteria are particularly difficult to treat in CF patients. The bacterial slime combines with the debris of the body's own defence cells to form a biofilm which protects the bacteria against both natural defences and antibiotics. And Bcc is an especially virulent bug.

"Burkholderia make other superbugs look like wimps", said Professor Govan, "They not only have larger genomes (hence genetic potential) and are resistant to almost all antibiotics, they can even use antibiotics such as penicillin as a nutrient. One of the problems is that when they are grown under normal laboratory conditions they do not produce the exopolysaccharide slime so their potential for causing serious infection may have been underestimated. We grew them on onion tissue – they were first identified in the 1950's as the cause of onion rot – and found that then they produced copious amounts of slime. Onion tissue contains a lot of simple sugars, including mannitol".

Since Professor Govan's work was published, further potential complications in CF patients caused by the Burkholderia bacteria have been identified. Commenting on the work in the current issue of Microbiology, Dr David Reid, from the Menzies Research Institute, Hobart, Australia, and Dr Scott Bell from The Prince Charles Hospital, Brisbane, Australia, have suggested that the increased levels of sugar in the blood of CF patients with diabetes could contribute to Burkholderia infections.

"CF-related diabetes affects almost one-third of adults with CF", said Dr Reid, "But no comprehensive studies have been carried out to investigate the effect of diabetes on Burkholderia infection. We will need international collaboration to ensure there are sufficient patient numbers to make any survey statistically significant".

"CF patients known to have Burkholderia infections have been excluded from the clinical trials of mannitol therapy", he went on, "But the obvious concern is that, despite Professor Govan's findings, patients with Burkholderia infections will be prescribed mannitol – because mannitol works very well for CF patients with infections caused by a bug called Pseudomonas aeruginosa which consitute the vast majority of the CF population".

In a further twist to the tale, one of the most virulent strains of Burkholderia lacks the gene that causes the bacterium to produce slime – and so CF patients infected with this particular variety might be able to benefit from mannitol therapy. However less virulent Burkholderia strains can use the mannitol to produce slime and make the infections they cause much more severe.

Dianne Stilwell | EurekAlert!
Further information:
http://www.sgm.ac.uk

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>