Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Successful strategy developed to regenerate blood vessels

18.04.2011
Researchers at The University of Western Ontario have discovered a strategy for stimulating the formation of highly functional new blood vessels in tissues that are starved of oxygen.

Dr. Geoffrey Pickering and Matthew Frontini at the Schulich School of Medicine & Dentistry developed a strategy in which a biological factor, called fibroblast growth factor 9 (FGF9), is delivered at the same time that the body is making its own effort at forming new blood vessels in vulnerable or damaged tissue. The result is that an otherwise unsuccessful attempt at regenerating a blood supply becomes a successful one. Their findings are published online in Nature Biotechnology.

"Heart attacks and strokes are leading causes of death and disability among Canadians. Coronary bypass surgery and stenting are important treatments but are not suitable for many individuals," explains Dr. Pickering, a professor of Medicine (Cardiology), Biochemistry, and Medical Biophysics, and a scientist at the Robarts Research Institute. "Because of this, there has been considerable interest in recent years in developing biological strategies that promote the regeneration of a patient's own blood vessels."

This potential treatment has been termed 'therapeutic angiogenesis'. "Unfortunately and despite considerable investigation, therapeutic angiogenesis has not as yet been found to be beneficial to patients with coronary artery disease. It appears that new blood vessels that form using approaches to date do not last long, and may not have the ability to control the flow of blood into the areas starved of oxygen."

The work of Dr. Pickering and collaborators provides a method to overcome these limitations. This strategy is based on paying more attention to the "supporting" cells of the vessel wall, rather than the endothelial or lining cells of the artery wall. The research team found that by activating the supporting cells, new blood vessel sprouts in adult mice did not shrivel up and disappear but instead lasted for over a year. Furthermore, these regenerating blood vessels were now enveloped by smooth muscle cells that gave them the ability to constrict and relax, a critical process that ensures the right amount of blood and oxygen gets to the tissues.

"FGF9 seemed to 'awaken' the supporting cells and stimulated their wrapping around the otherwise fragile blood vessel wall" said Frontini, the first author of the manuscript. "The idea of promoting the supporting cellular actors rather than the leading actors opens new ways of thinking about vascular regeneration and new possibilities for treating patients with vascular disease."

Funding for the research was provided by the Canadian Institutes of Health Research, Heart and Stroke Foundation of Ontario, and Lawson Health Research Institute. Dr. Pickering holds the Heart and Stroke Foundation of Ontario / Barnett-Ivey Chair at the Robarts Research Institute. He is also a scientist with the Lawson Health Research Institute, and a cardiologist at London Health Sciences Centre.

Kathy Wallis | EurekAlert!
Further information:
http://www.uwo.ca

More articles from Life Sciences:

nachricht Sleep as energy saving mode
21.11.2017 | Universitätsspital Bern

nachricht Water world
20.11.2017 | Washington University in St. Louis

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>