Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Successful nurturing of young talent

17.01.2012
Viktoria Däschlein-Gessner recently conducted research in California, before opting to join the University of Würzburg. With an Emmy Noether grant in the bag, she is setting up her own junior research group at the Institute of Inorganic Chemistry and is on the lookout for new and interesting substances.

Her high school tutor had actually advised her against studying chemistry, saying that it was not a subject for a woman, but if she really must study it then she should at least set her sights on becoming a teacher. However, this did not stop Viktoria Däschlein-Gessner from enrolling on a chemistry course at the University of Marburg. A degree course.

Now the 29-year-old lectures and conducts research at the University of Würzburg’s Institute of Inorganic Chemistry. Working under Professor Holger Braunschweig, she is in the process of setting up her own junior research group and pursuing her postdoctoral qualification (habilitation). The German Research Foundation (DFG) is supporting her in this venture with a grant of around one million euros over the next five years within the framework of its Emmy Noether Program. The program is intended to provide talented young scientists with the opportunity to achieve scientific independence more rapidly; by running their own junior research groups, postdoctoral researchers should acquire the qualification to become a university lecturer, according to the DFG’s description of the program.

Viktoria Däschlein-Gessner works with molecules that have a nucleus usually containing a reactive carbon atom that possesses a high negative charge. She combines these with various types of so-called “electron-drawing groups”, which enable stabilization of the products, making it possible to research their properties.

On the quest for stable systems

“We are practicing basic chemistry,” she says. “What we are concerned with is making reactive substances manageable so that we can work with them further.” This is not always that easy for the very reason that these substances react so quickly with their environment and can head in directions that provide for new surprises. In such cases, the chemist has to reach for her bag of tricks. The experiments are then conducted in a special glove box, separated from normal ambient air in a pure inert gas atmosphere, or in extreme minus degrees.

“Our goal is to develop systems that are stable,” says Viktoria Däschlein-Gessner. Once this has been achieved, the search for the reactions that occur there will begin – in conjunction with the question: Where can we go from here with these reactions? Should the work be successful, one possible outcome might be a metal complex that serves as a catalyst and therefore makes the transition from research to application. In principle, however, for the researcher it is all about “understanding reactivity”. A practical application would an ideal consequence of the insights obtained.

About the person

Viktoria Däschlein-Gessner grew up near Würzburg and attended school in Lauda-Königshofen. In 2002, she started a chemistry degree course in Marburg, before switching, in 2004, to the University of Würzburg for the advanced stage of her studies. She obtained a doctorate at TU Dortmund University with a thesis on lithiumorganic compounds; she then spent some time conducting postdoctoral research at the University of California in Berkeley (USA). And now she is back in Würzburg.

“Würzburg’s chemistry department enjoys a good reputation, internationally as well,” she says. And nowhere else in Germany is there an inorganic chemistry department as large as the one headed by Holger Braunschweig, she adds. What is more, the institute’s equipment is outstanding, especially as regards the large apparatus. A spectral analysis with the help of nuclear magnetic resonance spectroscopy, or an x-ray structure analysis – not a problem at the Institute of Inorganic Chemistry.

However, Viktoria Däschlein-Gessner does not have all that much time to work in the laboratory at the moment. The task of setting up her own research group is taking its toll. With a load of meetings, paperwork, and administrative chores to deal with, the chemist sometimes finds herself unable to conclude an experiment she has prepared in the extractor hood because she is called away for other urgent matters. This will soon be over, she hopes. Once the team has established itself and the “start-up phase” has been completed. After all, she still has research to do for her habilitation.

Why did she choose chemistry in the first place? “I have always enjoyed asking questions. And in chemistry you receive the most answers,” says Viktoria Däschlein-Gessner. Today, after a good ten years of studying and research, she still finds the world of atoms and molecules fascinating. “You always come across new surprises in chemistry,” she says.

Contact

Dr. Viktoria H. Däschlein-Gessner, T: +49 (0)931 31-84163,
e-mail: VGessner@uni-wuerzburg.de

Gunnar Bartsch | idw
Further information:
http://www.uni-wuerzburg.de

Further reports about: CHEMISTRY Molecules electron-drawing groups gas atmosphere inorganic

More articles from Life Sciences:

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

nachricht How gut bacteria can make us ill
18.01.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

How gut bacteria can make us ill

18.01.2017 | Life Sciences

On track to heal leukaemia

18.01.2017 | Health and Medicine

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>