Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Successful nurturing of young talent

17.01.2012
Viktoria Däschlein-Gessner recently conducted research in California, before opting to join the University of Würzburg. With an Emmy Noether grant in the bag, she is setting up her own junior research group at the Institute of Inorganic Chemistry and is on the lookout for new and interesting substances.

Her high school tutor had actually advised her against studying chemistry, saying that it was not a subject for a woman, but if she really must study it then she should at least set her sights on becoming a teacher. However, this did not stop Viktoria Däschlein-Gessner from enrolling on a chemistry course at the University of Marburg. A degree course.

Now the 29-year-old lectures and conducts research at the University of Würzburg’s Institute of Inorganic Chemistry. Working under Professor Holger Braunschweig, she is in the process of setting up her own junior research group and pursuing her postdoctoral qualification (habilitation). The German Research Foundation (DFG) is supporting her in this venture with a grant of around one million euros over the next five years within the framework of its Emmy Noether Program. The program is intended to provide talented young scientists with the opportunity to achieve scientific independence more rapidly; by running their own junior research groups, postdoctoral researchers should acquire the qualification to become a university lecturer, according to the DFG’s description of the program.

Viktoria Däschlein-Gessner works with molecules that have a nucleus usually containing a reactive carbon atom that possesses a high negative charge. She combines these with various types of so-called “electron-drawing groups”, which enable stabilization of the products, making it possible to research their properties.

On the quest for stable systems

“We are practicing basic chemistry,” she says. “What we are concerned with is making reactive substances manageable so that we can work with them further.” This is not always that easy for the very reason that these substances react so quickly with their environment and can head in directions that provide for new surprises. In such cases, the chemist has to reach for her bag of tricks. The experiments are then conducted in a special glove box, separated from normal ambient air in a pure inert gas atmosphere, or in extreme minus degrees.

“Our goal is to develop systems that are stable,” says Viktoria Däschlein-Gessner. Once this has been achieved, the search for the reactions that occur there will begin – in conjunction with the question: Where can we go from here with these reactions? Should the work be successful, one possible outcome might be a metal complex that serves as a catalyst and therefore makes the transition from research to application. In principle, however, for the researcher it is all about “understanding reactivity”. A practical application would an ideal consequence of the insights obtained.

About the person

Viktoria Däschlein-Gessner grew up near Würzburg and attended school in Lauda-Königshofen. In 2002, she started a chemistry degree course in Marburg, before switching, in 2004, to the University of Würzburg for the advanced stage of her studies. She obtained a doctorate at TU Dortmund University with a thesis on lithiumorganic compounds; she then spent some time conducting postdoctoral research at the University of California in Berkeley (USA). And now she is back in Würzburg.

“Würzburg’s chemistry department enjoys a good reputation, internationally as well,” she says. And nowhere else in Germany is there an inorganic chemistry department as large as the one headed by Holger Braunschweig, she adds. What is more, the institute’s equipment is outstanding, especially as regards the large apparatus. A spectral analysis with the help of nuclear magnetic resonance spectroscopy, or an x-ray structure analysis – not a problem at the Institute of Inorganic Chemistry.

However, Viktoria Däschlein-Gessner does not have all that much time to work in the laboratory at the moment. The task of setting up her own research group is taking its toll. With a load of meetings, paperwork, and administrative chores to deal with, the chemist sometimes finds herself unable to conclude an experiment she has prepared in the extractor hood because she is called away for other urgent matters. This will soon be over, she hopes. Once the team has established itself and the “start-up phase” has been completed. After all, she still has research to do for her habilitation.

Why did she choose chemistry in the first place? “I have always enjoyed asking questions. And in chemistry you receive the most answers,” says Viktoria Däschlein-Gessner. Today, after a good ten years of studying and research, she still finds the world of atoms and molecules fascinating. “You always come across new surprises in chemistry,” she says.

Contact

Dr. Viktoria H. Däschlein-Gessner, T: +49 (0)931 31-84163,
e-mail: VGessner@uni-wuerzburg.de

Gunnar Bartsch | idw
Further information:
http://www.uni-wuerzburg.de

Further reports about: CHEMISTRY Molecules electron-drawing groups gas atmosphere inorganic

More articles from Life Sciences:

nachricht Stiffness matters
22.02.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Separate brain systems cooperate during learning, study finds
22.02.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>