Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Successful graphene synthesis out of single molecules

13.12.2013
Chemists from the Max Planck Institute for Polymer Research in Mainz manage to significantly develop the graphene synthesis. The industrial use of this wonder material is drawing nearer.

Researchers from the Max Planck Institute for Polymer Research (MPI-P) working with Xinliang Feng and Klaus Müllen succeeded in producing remarkably long, structurally well-defined and liquid-phase-processable graphene nanoribbons (GNRs). This newly developed synthesis method was introduced in the scientific journal "Nature Chemistry" http://www.nature.com/nchem/journal/vaop/ncurrent/full/nchem.1819.html.

This synthesis method consists in putting together molecular building blocks to produce graphene ribbons in the desired shape and size. The key property of this material is displayed only afterwards: defect-free graphene ribbons show excellent semiconducting properties. As a consequence, this nanomaterial could optimally be used in electronic devices such as transistors and be far more effective than the silicon currently in use.

"This is a great step to achieve graphene nanoribbons with unique properties and good solution processability by means of organic solution synthesis" research group leader Feng explains.

A worldwide scientific competition over the research and production of graphene has broken out. The European Commission is thoroughly involved: with a budget of nearly €1 billion over the next ten years, the research program "Graphene Flagship" (2013) provides funding for the utilization of graphene. Scientists at the MPI-P have already made important progresses: since 2003, Klaus Müllen, director at the MPI-P, pursues the "bottom-up" approach to synthesize graphene ribbons from molecular building blocks.

Mechanical methods ("top-down") or crystal growth do not reach the necessary precision and produce flawed results. The solution-mediated production method, developed in 2011 by the Müllen’s workgroup, meets conversely all the requirements. Thanks to a modification in the method, it is now possible to form structurally well-defined graphene ribbons. Graphene ribbons also have electronic bandgaps, which allow to control the movement of the electrons and the optical properties; a property that graphene – this highly praised wonder material – lacks. As a result, the charge carrier mobility of graphene ribbons is superior to that of silicon.

As a replacement of silicon in electronic devices, batteries or solar cells, graphene ribbons are expected to boost the performance of such devices in the future. Thus, it will be crucial to know if they can be manufactured on an industrial scale with the help of this new solution-synthetized method.

The inherent transdisciplinary cooperation approach of the Institute played a decisive role in this recent research success. The breakthrough made by the synthesis experts was only validated after numerous specific investigations carried by other workgroups of the MPI-P. Laser spectroscopic measurements showed that the graphene obtained in liquid phase has a high photoconductivity. Akimitsu Narita, a PhD student, who was significantly involved in the synthesis, could attest the existence of the bandgaps by investigating the ultraviolet absorption of the solution-synthetized graphene ribbons. Outside the MPI-P, other scientists - from the FU Berlin, the Netherlands, Britain, Denmark and Belgium - were also involved in analyzing the properties of this material.

The material will especially be the object of the fundamental research, to which the MPI-P is committed. The physical properties and their source will be microscopically and spectroscopically investigated to uncover further possible improvements and decisive properties.

The material will especially be the object of the fundamental research, to which the MPI-P is committed. The physical properties and their source will be microscopically and spectroscopically investigated to uncover further possible improvements and decisive properties.

Weitere Informationen:
http://www.mpip-mainz.mpg.de/news-events/news/graphene_nanoribbons
- Images and detailed information on the MPIP website

Stephan Imhof | Max-Planck-Institut
Further information:
http://www.mpip-mainz.mpg.de/news-events/news/graphene_nanoribbons

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>