Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Successful graphene synthesis out of single molecules

13.12.2013
Chemists from the Max Planck Institute for Polymer Research in Mainz manage to significantly develop the graphene synthesis. The industrial use of this wonder material is drawing nearer.

Researchers from the Max Planck Institute for Polymer Research (MPI-P) working with Xinliang Feng and Klaus Müllen succeeded in producing remarkably long, structurally well-defined and liquid-phase-processable graphene nanoribbons (GNRs). This newly developed synthesis method was introduced in the scientific journal "Nature Chemistry" http://www.nature.com/nchem/journal/vaop/ncurrent/full/nchem.1819.html.

This synthesis method consists in putting together molecular building blocks to produce graphene ribbons in the desired shape and size. The key property of this material is displayed only afterwards: defect-free graphene ribbons show excellent semiconducting properties. As a consequence, this nanomaterial could optimally be used in electronic devices such as transistors and be far more effective than the silicon currently in use.

"This is a great step to achieve graphene nanoribbons with unique properties and good solution processability by means of organic solution synthesis" research group leader Feng explains.

A worldwide scientific competition over the research and production of graphene has broken out. The European Commission is thoroughly involved: with a budget of nearly €1 billion over the next ten years, the research program "Graphene Flagship" (2013) provides funding for the utilization of graphene. Scientists at the MPI-P have already made important progresses: since 2003, Klaus Müllen, director at the MPI-P, pursues the "bottom-up" approach to synthesize graphene ribbons from molecular building blocks.

Mechanical methods ("top-down") or crystal growth do not reach the necessary precision and produce flawed results. The solution-mediated production method, developed in 2011 by the Müllen’s workgroup, meets conversely all the requirements. Thanks to a modification in the method, it is now possible to form structurally well-defined graphene ribbons. Graphene ribbons also have electronic bandgaps, which allow to control the movement of the electrons and the optical properties; a property that graphene – this highly praised wonder material – lacks. As a result, the charge carrier mobility of graphene ribbons is superior to that of silicon.

As a replacement of silicon in electronic devices, batteries or solar cells, graphene ribbons are expected to boost the performance of such devices in the future. Thus, it will be crucial to know if they can be manufactured on an industrial scale with the help of this new solution-synthetized method.

The inherent transdisciplinary cooperation approach of the Institute played a decisive role in this recent research success. The breakthrough made by the synthesis experts was only validated after numerous specific investigations carried by other workgroups of the MPI-P. Laser spectroscopic measurements showed that the graphene obtained in liquid phase has a high photoconductivity. Akimitsu Narita, a PhD student, who was significantly involved in the synthesis, could attest the existence of the bandgaps by investigating the ultraviolet absorption of the solution-synthetized graphene ribbons. Outside the MPI-P, other scientists - from the FU Berlin, the Netherlands, Britain, Denmark and Belgium - were also involved in analyzing the properties of this material.

The material will especially be the object of the fundamental research, to which the MPI-P is committed. The physical properties and their source will be microscopically and spectroscopically investigated to uncover further possible improvements and decisive properties.

The material will especially be the object of the fundamental research, to which the MPI-P is committed. The physical properties and their source will be microscopically and spectroscopically investigated to uncover further possible improvements and decisive properties.

Weitere Informationen:
http://www.mpip-mainz.mpg.de/news-events/news/graphene_nanoribbons
- Images and detailed information on the MPIP website

Stephan Imhof | Max-Planck-Institut
Further information:
http://www.mpip-mainz.mpg.de/news-events/news/graphene_nanoribbons

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>