Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New substance effectively combats multi-resistant bacteria

30.10.2013
In Europe alone, more than 25,000 people die each year from infections caused by multi-resistant bacteria.
Researchers from University of Copenhagen have now developed and characterized a substance that quickly and effectively kills the virulent bacteria. The substance employs a multifunctional mechanism that reduces the risk of antibiotic resistance. The findings have recently been published in the scientific journal Chemistry & Biology.

Since WWII, antibiotics have made it possible to cure lethal bacterial infections. However, in recent years the efficacy of antibiotics has been drastically reduced due to increasing bacterial resistance. Today, bacteria resistant to nearly all known antibiotics are prevalent in many parts of the world.

In recent years the efficacy of antibiotics has been drastically reduced due to increasing bacterial resistance.

“We have succeeded in preparing and characterizing a very stable substance that kills multi-resistant bacteria extremely quickly and effectively. The most interesting aspect is that the bacteria are attacked using a multifunctional mechanism that drastically reduces the risk of resistance development compared with traditional antibiotics,” says Rasmus Jahnsen.

Jahnsen conducted the research into the development of substances against multi-resistant bacteria at the Department of Drug Design and Pharmacology, University of Copenhagen.

The recently developed substance is called HDM-4, which stands for Host Defence Peptidomimetic 4. The findings are the result of collaboration between University of Copenhagen and the University of British Columbia in Canada.

Boosts the innate immune response

For a number of years, a group of researchers led by Associate Professor Henrik Franzyk at the Faculty of Health and Medical Sciences have worked on the optimization of a unique class of antibacterial substances. All plants, animals and humans produce the important antimicrobial peptides that form part of the innate immune system – the body’s first line of defence against bacterial attack.

“The killing mechanism involves destabilising the bacterial membrane and binding onto the bacteria’s DNA, which in both cases results in the death of the bacteria. We have also shown that the substance can activate the human body’s own immune cells, strengthening its defence against bacteria during infection,” says Rasmus Jahnsen.

Pharmaceutical industry lacks interest in antibiotics

The researchers have tested the new substance on bacteria-infected tissue and the results show that it possesses several characteristics that make it highly attractive in connection with the possible development of new antibiotics.

“It’s the first step to developing a new drug. We hope that in collaboration with partners we can conduct a series of tests in the near future to show that the substance can actually combat an infection in a mammal. If we achieve the same results in animals, we will have a potential sensation on our hands,” adds Rasmus Jahnsen.

Jahnsen believes the pharmaceutical industry needs to become more actively involved.

“Only a tiny fraction of the pharmaceutical research is devoted to development of new antibiotics — partly because research into cancer and chronic diseases such as diabetes and cardiovascular diseases are seen as better long-term investments. This leaves us in the extremely unfortunate situation where infectious diseases once again pose extremely serious threats to human health as the efficacy of medical drugs continues to be undermined by bacterial resistance. It is therefore important to conduct more research into new antibiotics,” concludes Rasmus Jahnsen.

Contact:

Rasmus Jahnsen
Mobile: +45 26 27 88 04

Rasmus Jahnsen | EurekAlert!
Further information:
http://www.ku.dk

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>