Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New substance effectively combats multi-resistant bacteria

30.10.2013
In Europe alone, more than 25,000 people die each year from infections caused by multi-resistant bacteria.
Researchers from University of Copenhagen have now developed and characterized a substance that quickly and effectively kills the virulent bacteria. The substance employs a multifunctional mechanism that reduces the risk of antibiotic resistance. The findings have recently been published in the scientific journal Chemistry & Biology.

Since WWII, antibiotics have made it possible to cure lethal bacterial infections. However, in recent years the efficacy of antibiotics has been drastically reduced due to increasing bacterial resistance. Today, bacteria resistant to nearly all known antibiotics are prevalent in many parts of the world.

In recent years the efficacy of antibiotics has been drastically reduced due to increasing bacterial resistance.

“We have succeeded in preparing and characterizing a very stable substance that kills multi-resistant bacteria extremely quickly and effectively. The most interesting aspect is that the bacteria are attacked using a multifunctional mechanism that drastically reduces the risk of resistance development compared with traditional antibiotics,” says Rasmus Jahnsen.

Jahnsen conducted the research into the development of substances against multi-resistant bacteria at the Department of Drug Design and Pharmacology, University of Copenhagen.

The recently developed substance is called HDM-4, which stands for Host Defence Peptidomimetic 4. The findings are the result of collaboration between University of Copenhagen and the University of British Columbia in Canada.

Boosts the innate immune response

For a number of years, a group of researchers led by Associate Professor Henrik Franzyk at the Faculty of Health and Medical Sciences have worked on the optimization of a unique class of antibacterial substances. All plants, animals and humans produce the important antimicrobial peptides that form part of the innate immune system – the body’s first line of defence against bacterial attack.

“The killing mechanism involves destabilising the bacterial membrane and binding onto the bacteria’s DNA, which in both cases results in the death of the bacteria. We have also shown that the substance can activate the human body’s own immune cells, strengthening its defence against bacteria during infection,” says Rasmus Jahnsen.

Pharmaceutical industry lacks interest in antibiotics

The researchers have tested the new substance on bacteria-infected tissue and the results show that it possesses several characteristics that make it highly attractive in connection with the possible development of new antibiotics.

“It’s the first step to developing a new drug. We hope that in collaboration with partners we can conduct a series of tests in the near future to show that the substance can actually combat an infection in a mammal. If we achieve the same results in animals, we will have a potential sensation on our hands,” adds Rasmus Jahnsen.

Jahnsen believes the pharmaceutical industry needs to become more actively involved.

“Only a tiny fraction of the pharmaceutical research is devoted to development of new antibiotics — partly because research into cancer and chronic diseases such as diabetes and cardiovascular diseases are seen as better long-term investments. This leaves us in the extremely unfortunate situation where infectious diseases once again pose extremely serious threats to human health as the efficacy of medical drugs continues to be undermined by bacterial resistance. It is therefore important to conduct more research into new antibiotics,” concludes Rasmus Jahnsen.

Contact:

Rasmus Jahnsen
Mobile: +45 26 27 88 04

Rasmus Jahnsen | EurekAlert!
Further information:
http://www.ku.dk

More articles from Life Sciences:

nachricht Nesting aids make agricultural fields attractive for bees
20.07.2017 | Julius-Maximilians-Universität Würzburg

nachricht The Kitchen Sponge – Breeding Ground for Germs
20.07.2017 | Hochschule Furtwangen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>