Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New substance effectively combats multi-resistant bacteria

30.10.2013
In Europe alone, more than 25,000 people die each year from infections caused by multi-resistant bacteria.
Researchers from University of Copenhagen have now developed and characterized a substance that quickly and effectively kills the virulent bacteria. The substance employs a multifunctional mechanism that reduces the risk of antibiotic resistance. The findings have recently been published in the scientific journal Chemistry & Biology.

Since WWII, antibiotics have made it possible to cure lethal bacterial infections. However, in recent years the efficacy of antibiotics has been drastically reduced due to increasing bacterial resistance. Today, bacteria resistant to nearly all known antibiotics are prevalent in many parts of the world.

In recent years the efficacy of antibiotics has been drastically reduced due to increasing bacterial resistance.

“We have succeeded in preparing and characterizing a very stable substance that kills multi-resistant bacteria extremely quickly and effectively. The most interesting aspect is that the bacteria are attacked using a multifunctional mechanism that drastically reduces the risk of resistance development compared with traditional antibiotics,” says Rasmus Jahnsen.

Jahnsen conducted the research into the development of substances against multi-resistant bacteria at the Department of Drug Design and Pharmacology, University of Copenhagen.

The recently developed substance is called HDM-4, which stands for Host Defence Peptidomimetic 4. The findings are the result of collaboration between University of Copenhagen and the University of British Columbia in Canada.

Boosts the innate immune response

For a number of years, a group of researchers led by Associate Professor Henrik Franzyk at the Faculty of Health and Medical Sciences have worked on the optimization of a unique class of antibacterial substances. All plants, animals and humans produce the important antimicrobial peptides that form part of the innate immune system – the body’s first line of defence against bacterial attack.

“The killing mechanism involves destabilising the bacterial membrane and binding onto the bacteria’s DNA, which in both cases results in the death of the bacteria. We have also shown that the substance can activate the human body’s own immune cells, strengthening its defence against bacteria during infection,” says Rasmus Jahnsen.

Pharmaceutical industry lacks interest in antibiotics

The researchers have tested the new substance on bacteria-infected tissue and the results show that it possesses several characteristics that make it highly attractive in connection with the possible development of new antibiotics.

“It’s the first step to developing a new drug. We hope that in collaboration with partners we can conduct a series of tests in the near future to show that the substance can actually combat an infection in a mammal. If we achieve the same results in animals, we will have a potential sensation on our hands,” adds Rasmus Jahnsen.

Jahnsen believes the pharmaceutical industry needs to become more actively involved.

“Only a tiny fraction of the pharmaceutical research is devoted to development of new antibiotics — partly because research into cancer and chronic diseases such as diabetes and cardiovascular diseases are seen as better long-term investments. This leaves us in the extremely unfortunate situation where infectious diseases once again pose extremely serious threats to human health as the efficacy of medical drugs continues to be undermined by bacterial resistance. It is therefore important to conduct more research into new antibiotics,” concludes Rasmus Jahnsen.

Contact:

Rasmus Jahnsen
Mobile: +45 26 27 88 04

Rasmus Jahnsen | EurekAlert!
Further information:
http://www.ku.dk

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>