Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stuttgart researchers discover ferroelectric liquid crystal comprising mainly water

18.11.2013
About communicating molecular layers

Although certain liquid crystals mainly comprise water, a spontaneous alignment of electrical dipoles could incur in them and consequently a spontaneous electrical polarisation could occur macroscopically: chemists from the Institute of Physical Chemistry at the University of Stuttgart (IPC) were able to show this and report about it in the leading trade journal “Applied Chemistry”*).


Molecular layers
University of Stuttgart IPC

These so-called lyotropic liquid crystals are ordered solutions of organic molecules, for example in water. In the liquid crystal examined, chiral organic molecules with a specific inclination angle arrange themselves in layers. The solvent is between these layers. The surprising thing is: although the water layers between the molecular layers are comparatively thick (approx. 2 nanometres), the organic molecules have the same direction of inclination in each layer.

If an electrical field is created, it is possible to switch backwards and forwards between opposing directions of inclination through changing the field direction (see illustration). With this evidence of ferroelectricity in a liquid crystal solution was provided for the first time.

Materials showing evidence of a spontaneous electrical polarisation even without electrical field are described as ferroelectrics. Ferroelectricity was first discovered by Joseph Valasek at the beginning of the 20th century and was only known in solid crystals for a long time. Up to now it has been considered extremely improbable that ferroelectricity can also occur in lyotropic liquid crystals since these largely comprise small, disorganised solvent molecules.

This question already aroused the scientific ambition of the research group of Prof. Dr. Frank Gießelmann at the Institute of Physical Chemistry at the University of Stuttgart some years ago. After some failures and the experience gained through this, the team has now been successful in customising a new organic “hybrid molecule“ that combines a water-soluble chiral head group and a water-insoluble, stiff residue.

The new substance was examined by Johanna Bruckner in the course of her doctoral studies for which she received a scholarship from the State Graduate Sponsorship Programme. The young researcher experimented with various solvents, concentrations and temperature ranges. She ultimately found the suitable conditions under which lyotropic liquid crystal with a water proportion of up to 60 percent actually showed a spontaneous electrical polarisation and with this ferroelectrical properties. Bruckner was able to prove this with electro-optical measurements under the polarisation microscope.

The prerequisite for this effect, however, is that the direction of inclination is equal in all molecular layers. The exciting question concerning scientists is now: how do the molecular layers “know” how their neighbouring layers are aligned, although they are separated from each other through the comparatively disorganised water molecules and consequently no connection actually exists between them. How can they “communicate” with each other in spite of this?

Applications in sensor technology conceivable

Prof. Frank Gießelmann explained: “We would now like to clarify, of course, how this phenomenon is possible. It initially concerns pure fundamental research yet future applications would also be conceivable.“ Applications in the sensor technology of chiral molecules would be possible, as can often be found for example in pharmaceutical active agents. If they are dissolved in the water layers of the new liquid crystal, they induce measureable changes of its spontaneous electrical polarisation, depending on the purity and concentration of the molecules.

The history of the liquid crystals, which were discovered exactly 125 years ago, makes it clear that fundamental research which was only of academic interest for a long time, can suddenly gain in great economic importance reaching far into the spheres of life of mankind, such as the rapid spread of liquid crystal displays (LCD), for example for notebooks, televisions and mobile phones.

*) Johanna R. Bruckner, Jan H. Porada, Clarissa F. Dietrich, Ingo Dierking and
Frank Giesselmannn: "A Lyotropic Chiral Smectic C Liquid Crystal with Polar Electrooptic Switching", Applied Chemistry International Edition 2013, 52, 8934 –8937. Online-Version: DOI: 10.1002/anie.201303344
Image description:
Depending on the direction of inclination of the molecules in the layers (left resp. right top), the direction of spontaneous polarisation changes. Through creating an electrical field, switches can be made backwards and forwards between these two directions, through which the texture in the polarisation microscope changes (left resp. right bottom).
Further information:
Prof. Dr. Frank Gießelmann, Institute of Physical Chemistry at the University of Stuttgart, Tel. 0711-685-64460, Email: f.giesselmann(at)ipc.uni-stuttgart.de

Andrea Mayer-Grenu | idw
Further information:
http://www.uni-stuttgart.de

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>