Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stuttgart researchers discover ferroelectric liquid crystal comprising mainly water

18.11.2013
About communicating molecular layers

Although certain liquid crystals mainly comprise water, a spontaneous alignment of electrical dipoles could incur in them and consequently a spontaneous electrical polarisation could occur macroscopically: chemists from the Institute of Physical Chemistry at the University of Stuttgart (IPC) were able to show this and report about it in the leading trade journal “Applied Chemistry”*).


Molecular layers
University of Stuttgart IPC

These so-called lyotropic liquid crystals are ordered solutions of organic molecules, for example in water. In the liquid crystal examined, chiral organic molecules with a specific inclination angle arrange themselves in layers. The solvent is between these layers. The surprising thing is: although the water layers between the molecular layers are comparatively thick (approx. 2 nanometres), the organic molecules have the same direction of inclination in each layer.

If an electrical field is created, it is possible to switch backwards and forwards between opposing directions of inclination through changing the field direction (see illustration). With this evidence of ferroelectricity in a liquid crystal solution was provided for the first time.

Materials showing evidence of a spontaneous electrical polarisation even without electrical field are described as ferroelectrics. Ferroelectricity was first discovered by Joseph Valasek at the beginning of the 20th century and was only known in solid crystals for a long time. Up to now it has been considered extremely improbable that ferroelectricity can also occur in lyotropic liquid crystals since these largely comprise small, disorganised solvent molecules.

This question already aroused the scientific ambition of the research group of Prof. Dr. Frank Gießelmann at the Institute of Physical Chemistry at the University of Stuttgart some years ago. After some failures and the experience gained through this, the team has now been successful in customising a new organic “hybrid molecule“ that combines a water-soluble chiral head group and a water-insoluble, stiff residue.

The new substance was examined by Johanna Bruckner in the course of her doctoral studies for which she received a scholarship from the State Graduate Sponsorship Programme. The young researcher experimented with various solvents, concentrations and temperature ranges. She ultimately found the suitable conditions under which lyotropic liquid crystal with a water proportion of up to 60 percent actually showed a spontaneous electrical polarisation and with this ferroelectrical properties. Bruckner was able to prove this with electro-optical measurements under the polarisation microscope.

The prerequisite for this effect, however, is that the direction of inclination is equal in all molecular layers. The exciting question concerning scientists is now: how do the molecular layers “know” how their neighbouring layers are aligned, although they are separated from each other through the comparatively disorganised water molecules and consequently no connection actually exists between them. How can they “communicate” with each other in spite of this?

Applications in sensor technology conceivable

Prof. Frank Gießelmann explained: “We would now like to clarify, of course, how this phenomenon is possible. It initially concerns pure fundamental research yet future applications would also be conceivable.“ Applications in the sensor technology of chiral molecules would be possible, as can often be found for example in pharmaceutical active agents. If they are dissolved in the water layers of the new liquid crystal, they induce measureable changes of its spontaneous electrical polarisation, depending on the purity and concentration of the molecules.

The history of the liquid crystals, which were discovered exactly 125 years ago, makes it clear that fundamental research which was only of academic interest for a long time, can suddenly gain in great economic importance reaching far into the spheres of life of mankind, such as the rapid spread of liquid crystal displays (LCD), for example for notebooks, televisions and mobile phones.

*) Johanna R. Bruckner, Jan H. Porada, Clarissa F. Dietrich, Ingo Dierking and
Frank Giesselmannn: "A Lyotropic Chiral Smectic C Liquid Crystal with Polar Electrooptic Switching", Applied Chemistry International Edition 2013, 52, 8934 –8937. Online-Version: DOI: 10.1002/anie.201303344
Image description:
Depending on the direction of inclination of the molecules in the layers (left resp. right top), the direction of spontaneous polarisation changes. Through creating an electrical field, switches can be made backwards and forwards between these two directions, through which the texture in the polarisation microscope changes (left resp. right bottom).
Further information:
Prof. Dr. Frank Gießelmann, Institute of Physical Chemistry at the University of Stuttgart, Tel. 0711-685-64460, Email: f.giesselmann(at)ipc.uni-stuttgart.de

Andrea Mayer-Grenu | idw
Further information:
http://www.uni-stuttgart.de

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>