Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study suggests that successful blueprints are recycled by evolution

18.04.2011
A study by researchers in Austria and the US finds evidence that the different cell types that make up organs have arisen only once during the course of evolution.

The programs to develop these cells have been passed on ever since. The study which is published online by Nature Genetics has been supported by the GEN-AU Programme of the Austrian Ministry for Science and Research.

During the development of an embryo, a large number of different, specialised cell-types arise from the fertilised egg. The genetic information is identical in all cells of an organism. Different properties of cells arise because the activity of genes is controlled and regulated by so called transcription factors. By switching genes on or off, the body makes muscle cells, bone cells, liver cells and many more.

Scientists have been puzzling over the question whether the gene regulatory programs that control this development have been “invented” only once during evolution or whether they might have arisen anew in different species. Previous studies supported both theories to a certain extent.

A team of researchers in Austria and the United States has now looked at key regulatory proteins in six different species of the fruit fly Drosophila. They studied the development of the mesoderm, one of the three primary germ cell layers in the early embryo of all higher organisms. Mesodermal cells differentiate into muscle cells, heart cells, connecting tissue and bone, among others.

Evolution with a Twist

“Some of the fly species that we looked at are as closely related as humans are to other primates. Others are as distant as humans and birds”, explains Alexander Stark, a systems biologist at the Research Institute of Molecular Pathology (IMP) in Vienna and one of the authors of the study. The team focussed on the transcription factor Twist and looked at the binding sites for Twist on the DNA of the different species. It turned out that these binding sites are very similar in all the flies, suggesting that the program that regulates mesodermal development has been “recycled” rather than invented independently in these animals.

In addition to these results, the study also found that Twist interacts with partner transcription factors to specifically bind to DNA at the correct positions. A deeper understanding of these mechanisms will help understand how higher organisms such as humans develop and how flaws in the regulation of genes may lead to diseases such as cancer.

A network of collaborations

The study is the result of a fruitful cooperation between two former MIT-colleagues: Julia Zeitlinger, who is now at the Stowers Institute for Medical Research and the University of Kansas School of Medicine, identified the binding sites of transcription factors. Alexander Stark, who is now a Group Leader at the IMP and head of a sub-project of the Bioinformatics Integration Network III, was in charge of prediction and analysis of the data.

The Bioinformatics Integration Network (BIN), also sponsored under the Austrian GEN-AU Programme, develops bioinformatic solutions and offers them to other research groups. The network is led by Zlatko Trajanoski of the Medical University in Innsbruck.

Other partners of BIN are the Institute for Genomics and Bioinformatics of the University of Technology in Graz, the Center of Integrative Bioinformatics at the Max F. Perutz Laboratories in Vienna, and the Research Institute of Molecular Pathology in Vienna.

Collaborations were also entered with the Institute for Theoretical Chemistry and the Department of Structural and Computational Biology, both at the University of Vienna, UMIT – the Health and Life Sciences University Hall/Tyrol, and CeMM, the Research Center for Molecular Medicine of the Austrian Academy of Sciences in Vienna.

The publication is the result of the sub-project „Cis-acting regulatory motifs“, led by Maria Novatchkova und Alexander Stark (both IMP), one of ten sub-projects of BIN. The Austrian Genome Research Programme has been initiated by the Austrian Federal Ministry for Science and Research in 2001.

The Paper “High conservation of transcription factor binding and evidence for combinatorial regulation across six Drosophila species” was published online in Nature Genetics on April 10, 2011:

http://www.nature.com/ng/journal/vaop/ncurrent/full/ng.808.html

Contact:
Dr. Heidemarie Hurtl
Communications
Research Institute of Molecular Pathology
+ 43 1 79730 3625
+43 664 8247910
hurtl@imp.ac.at

Dr. Heidemarie Hurtl | idw
Further information:
http://www.imp.ac.at

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>