Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study reveals new role for RNA interference during chromosomal replication

17.10.2011
At the same time that a cell's DNA gets duplicated, a third of it gets super-compacted into repetitive clumps called heterochromatin.

This dense packing serves to repress or "silence" the DNA sequences within—which could wreck the genome if activated—as well as regulate the activity of nearby genes. When the cell divides, the daughter cells not only inherit a copy of the mother cell's DNA, but also the exact pattern in which that DNA is clumped into heterochromatin.

This "epigenetic" mode of inheritance—information not transmitted through the DNA code itself but by the way in which it is packaged—has long been investigated by Cold Spring Harbor Laboratory Professor and HHMI-GBMF Investigator Rob Martienssen. In a landmark study that was hailed as one of the breakthroughs of the year by Science magazine in 2002, Martienssen and his colleagues showed that the inheritance of heterochromatin depends on a set of mechanisms broadly defined as RNA interference (RNAi).

In a new study that appears online in Nature on October 16, Martienssen's team, including investigators from the Pasteur Institut in Paris and the University of Salamanca in Spain, describes a new role for RNAi, one that allows the DNA replication process itself to progress smoothly without resulting in DNA damage.

DNA is normally coiled around proteins called histones, which when chemically modified at specific locations, aggregate into dense arrays to form heterochromatin. Martienssen and others had previously found that RNAi guides this histone modification process, which occurs at the same time in the cell cycle when DNA is being duplicated.

In this RNAi-guided process, an enzyme called polymerase II copies or "transcribes" specific regions of DNA into RNA molecules, and somehow this modifies histones in those exact regions, thereby creating heterochromatin. These heterochromatic regions, however, alternate with so-called "origins of replication" – spots on the DNA where DNA-building proteins can bind, unzip the double-stranded DNA molecule to create a replication "fork," and begin to build a new strand of it.

This alternate arrangement of regions to be transcribed for heterochromatin assembly and regions that serve as origins for DNA replication raised a new question: how do the transcription machinery and the replication machinery work in tandem without colliding with each other and as a result stall the replication fork and trigger DNA damage?

In a recent study, Martienssen collaborated with scientists at the University of California at Berkeley and showed that the DNA-building proteins themselves could latch on to histone-modifying proteins and pull them along the replication fork.

"This finding raised the question of what role RNAi actually plays during the replication phase of the cell cycle," says Martienssen. "The answers to both questions turned out to be very simple and elegant."

His group's experiments in fission yeast, a simple model system used for studying heterochromatin, show that when the polymerase II enzyme has transcribed a stretch of DNA into RNA, the RNAi mechanism causes the enzyme to release its hold on the DNA and fall away. This allows the replication fork to progress smoothly and the DNA strands to be copied by the replication machinery. The histone-modifying proteins, which follow right along, establish heterochromatin.

The scientists found that failure or absence of the RNAi mechanism stalls replication, which triggers a strong "DNA damage" alert within the cell. That's when a repair mechanism called homologous recombination kicks in and repairs the stalled fork, but the ability to modify histones is lost.

"These experiments have revealed the real role of RNAi during the cell's replication phase, which is to protect cells from this sort of replication-associated fork damage," according to Martienssen.

"RNAi promotes heterochromatic silencing through replication-coupled release of RNA Pol II" appears online in Nature on October 16. The full citation is: Mikel Zaratiegui, Stephane Castel1, Danielle V. Irvine, Anna Kloc, Jie Ren, Fei Li, Elisa de Castro, Laura Marý´n, An-Yun Chang, Derek Goto, W. Zacheus Cande, Francisco Antequera, Benoit Arcangioli & Robert A. Martienssen. The paper can be downloaded at http://dx.doi.org/ using the doi 10.1038/nature10501.

About Cold Spring Harbor Laboratory

Founded in 1890, Cold Spring Harbor Laboratory (CSHL) has shaped contemporary biomedical research and education with programs in cancer, neuroscience, plant biology and quantitative biology. CSHL is ranked number one in the world by Thomson Reuters for impact of its research in molecular biology and genetics. The Laboratory has been home to eight Nobel Prize winners. Today, CSHL's multidisciplinary scientific community is more than 350 scientists strong and its Meetings & Courses program hosts more than 11,000 scientists from around the world each year. Tens of thousands more benefit from the research, reviews, and ideas published in journals and books distributed internationally by CSHL Press. The Laboratory's education arm also includes a graduate school and programs for undergraduates as well as middle and high school students and teachers. CSHL is a private, not-for-profit institution on the north shore of Long Island. For more information, visit www.cshl.edu.

Hema Bashyam | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
20.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>