Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study reveals enzyme function, could help find muscular dystrophy therapies

10.01.2012
Study reveals function of glycosylating enzyme involved in muscular dystrophy, brain development and infection by arenaviruses such as Lassa fever; ability to assay enzyme activity could help screen potential muscular dystrophy therapies

Researchers at the University of Iowa have worked out the exact function of an enzyme that is critical for normal muscle structure and is involved in several muscular dystrophies. The findings, which were published Jan. 6 in the journal Science, could be used to develop rapid, large-scale testing of potential muscular dystrophy therapies.

The enzyme, called LARGE, adds a critical sugar chain onto an important membrane protein called dystroglycan. This sugar chain acts like a glue allowing dystroglycan to attach to other proteins and by doing so, reinforce cell membranes in many tissues including muscle and brain. Dystroglycan does not function properly without this sugar link, and that malfunction causes muscular dystrophies and brain abnormalities.

"LARGE is a critical enzyme involved in maintaining muscle cell viability," says Kevin Campbell, Ph.D., professor and head of molecular physiology and biophysics at the UI Carver College of Medicine and a Howard Hughes Medical Institute investigator. "It adds on a unique sugar chain that allows the muscle cell to protect its membrane from injury. By figuring out the function of this enzyme we've finally identified this critical sugar link."

The new study shows that the enzyme activity of LARGE has two specific sugar-adding functions -- it transfers the sugars xylose and glucuronic acid. Using nuclear magnetic resonance analysis (NMR), the team was also able to determine the precise structure of the sugar chain produced by LARGE, which has not been seen before.

The study confirmed that this unique sugar chain is responsible for dystroglycan's ability to attach to its protein partners, which include laminin in muscle and neurexin in brain.

In addition to LARGE, several other enzymes are involved in building the important dystroglycan sugar chain, and mutations in all these enzymes cause congenital muscular dystrophies collectively known as secondary dystroglycanopathies. These disorders include Fukuyama Congenital Muscular Dystrophy, Walker-Warburg Syndrome, Muscle-Eye-Brain disease, Congenital Muscular Dystrophy 1C and 1D, and limb-girdle muscular dystrophy 2I.

However, in all cases, the part of the sugar chain that is critical for dystroglycan function is the part that is added by LARGE. Furthermore, work from Campbell's lab has shown that boosting LARGE activity in cells from patients with these types of muscular dystrophies is sufficient to restore dystroglycan function and overcome the defects in the cells.

By understanding what the LARGE enzyme does, the researchers have now been able to develop a test, or assay, to monitor enzyme activity.

"It's exciting that we now have this enzyme assay, which could be used in a large-scale high-throughput screen for drugs that increase (or decrease) LARGE activity," Campbell says.

Using the assay to identify compounds that boost LARGE activity might lead to potential treatments for the secondary dystroglycanopathies. The assay could also be used to look at variations in LARGE activity in patients' cells. This may help identify patients who are affected by these LARGE-related muscular dystrophies.

LARGE activity is important in other diseases

The unusual sugar chain that LARGE builds onto dystroglycan is also implicated in other diseases. A group of viruses that includes Lassa fever appear to require the sugar chain to infect cells. Lassa fever is a hemorrhagic illness that can cause serious disease and death.

Now that the researchers have determined the make-up of the unusual sugar, Campbell suggests that it will be possible to make and test it as a therapeutic to block or reduce infection by these viruses.

Campbell is also excited by another aspect of the Lassa fever link. A genome-wide study of populations in West Africa where Lassa fever is endemic suggests that the LARGE gene may be modified in this population. Campbell speculates that altering LARGE activity might provide some protection against infection by the Lassa fever virus. In the future, he hopes to use his team's newly developed enzyme assay to investigate if LARGE activity is altered in this population.

In addition to Campbell, the study team included Kei-ichiro Inamori, Ph.D., and Takako Yoshida-Moriguchi, Ph.D., who were co-first authors of the study, and Yuji Hara, Ph.D., Mary Anderson, and Liping Yu, Ph.D.

The study was funded in part by a National Institutes of Health grant for the Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center at the UI.

Jennifer Brown | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Life Sciences:

nachricht Research team creates new possibilities for medicine and materials sciences
22.01.2018 | Humboldt-Universität zu Berlin

nachricht Saarland University bioinformaticians compute gene sequences inherited from each parent
22.01.2018 | Universität des Saarlandes

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>