Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Measures Holes Antibacterials Create in Cell Walls

11.01.2013
The rise of antibiotic-resistant bacteria has initiated a quest for alternatives to conventional antibiotics.

One potential alternative is PlyC, a potent enzyme that kills the bacteria that causes strep throat and streptococcal toxic shock syndrome. PlyC operates by locking onto the surface of a bacteria cell and chewing a hole in the cell wall large enough for the bacteria’s inner membrane to protrude from the cell, ultimately causing the cell to burst and die.

Research has shown that alternative antimicrobials such as PlyC can effectively kill bacteria. However, fundamental questions remain about how bacteria respond to the holes that these therapeutics make in their cell wall and what size holes bacteria can withstand before breaking apart. Answering those questions could improve the effectiveness of current antibacterial drugs and initiate the development of new ones.

Researchers at the Georgia Institute of Technology and the University of Maryland recently conducted a study to try to answer those questions. The researchers created a biophysical model of the response of a Gram-positive bacterium to the formation of a hole in its cell wall. Then they used experimental measurements to validate the theory, which predicted that a hole in the bacteria cell wall larger than 15 to 24 nanometers in diameter would cause the cell to lyse, or burst. These small holes are approximately one-hundredth the diameter of a typical bacterial cell.

“Our model correctly predicted that the membrane and cell contents of Gram-positive bacteria cells explode out of holes in cell walls that exceed a few dozen nanometers. This critical hole size, validated by experiments, is much larger than the holes Gram-positive bacteria use to transport molecules necessary for their survival, which have been estimated to be less than 7 nanometers in diameter,” said Joshua Weitz, an associate professor in the School of Biology at Georgia Tech. Weitz also holds an adjunct appointment in the School of Physics at Georgia Tech.

The study was published online on Jan. 9, 2013 in the Journal of the Royal Society Interface. The work was supported by the James S. McDonnell Foundation and the Burroughs Wellcome Fund.

Common Gram-positive bacteria that infect humans include Streptococcus, which causes strep throat; Staphylococcus, which causes impetigo; and Clostridium, which causes botulism and tetanus. Gram-negative bacteria include Escherichia, which causes urinary tract infections; Vibrio, which causes cholera; and Neisseria, which causes gonorrhea.

Gram-positive bacteria differ from Gram-negative bacteria in the structure of their cell walls. The cell wall constitutes the outer layer of Gram-positive bacteria, whereas the cell wall lies between the inner and outer membrane of Gram-negative bacteria and is therefore protected from direct exposure to the environment.

Georgia Tech biology graduate student Gabriel Mitchell, Georgia Tech physics professor Kurt Wiesenfeld and Weitz developed a biophysical theory of the response of a Gram-positive bacterium to the formation of a hole in its cell wall. The model detailed the effect of pressure, bending and stretching forces on the changing configuration of the cell membrane due to a hole. The force associated with bending and stretching pulls the membrane inward, while the pressure from the inside of the cell pushes the membrane outward through the hole.

“We found that bending forces act to keep the membrane together and push it back inside, but a sufficiently large hole enables the bending forces to be overpowered by the internal pressure forces and the membrane begins to escape out and the cell contents follow,” said Weitz.

The balance between the bending and pressure forces led to the model prediction that holes 15 to 24 nanometers in diameter or larger would cause a bacteria cell to burst. To test the theory, Daniel Nelson, an assistant professor at the University of Maryland, used transmission electron microscopy images to measure the size of holes created in lysed Streptococcus pyogenes bacteria cells following PlyC exposure.

Nelson found holes in the lysed bacteria cells that ranged in diameter from 22 to 180 nanometers, with a mean diameter of 68 nanometers. These experimental measurements agreed with the researchers’ theoretical prediction of critical hole sizes that cause bacterial cell death.

According to the researchers, their theoretical model is the first to consider the effects of cell wall thickness on lysis.

“Because lysis events occur most often at thinner points in the cell wall, cell wall thickness may play a role in suppressing lysis by serving as a buffer against the formation of large holes,” said Mitchell.

The combination of theory and experiments used in this study provided insights into the effect of defects on a cell’s viability and the mechanisms used by enzymes to disrupt homeostasis and cause bacteria cell death. To further understand the mechanisms behind enzyme-induced lysis, the researchers plan to measure membrane dynamics as a function of hole geometry in the future.

CITATION: Mitchell GJ, Wiesenfeld K, Nelson DC, Weitz JS, “Critical cell wall hole size for lysis in Gram-positive bacteria,” J R Soc Interface 20120892 (2013): http://dx.doi.org/10.1098/rsif.2012.0892.

Research News
Georgia Institute of Technology
177 North Avenue
Atlanta, Georgia 30332-0181
Media Relations Contact: John Toon (404-894-6986)(jtoon@gatech.edu).
Writer: Abby Robinson

Abby Robinson | Newswise
Further information:
http://www.gatech.edu

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
20.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>