Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study of isolated snakes could help shed light on venom composition

While studying a way to more safely and effectively collect snake venom, University of Florida researchers have noticed the venom delivered by an isolated population of Florida cottonmouth snakes may be changing in response to their diet.

Scientists used a portable nerve stimulator to extract venom from anesthetized cottonmouths, producing more consistent extraction results and greater amounts of venom, according to findings published in August in the journal Toxicon. The study of venoms is important for many reasons, scientists say.

"The human and animal health benefits include understanding the components of venom that cause injury and developing better antivenin," said Darryl Heard, B.V.M.S., Ph.D., an associate professor in the UF College of Veterinary Medicine's department of small animal clinical sciences. "In addition, the venom components have the potential to be used for diagnostic tests and the development of new medical compounds."

But in addition to showing the extraction method is safer, more effective and less stressful to both snake and handler than the traditional "milking" technique, Heard and Ryan McCleary, a Ph.D. candidate in biology in UF's College of Liberal Arts and Sciences, discovered the venom from these particular snakes differs from that of mainland snakes, likely because of their unique diet of dead fish dropped by seabirds.

Heard and McCleary collaborated to develop a safe, reliable and humane technique for collecting venom from cottonmouths as part of a larger study on a specific population of snakes that reside on Seahorse Key, an isolated island near Cedar Key on the Florida's Gulf Coast.

The venom collection study included data from 49 snakes on Seahorse Key.

"Snakes on this island are noted for their large size," said Heard, a zoological medicine veterinarian with additional expertise in anesthesia. He added that Harvey Lillywhite, Ph.D., a professor of biology at UF and McCleary's predoctoral adviser, has confirmed that cottonmouths on Seahorse Key eat primarily dead fish dropped by birds in a large seabird rookery.

Lillywhite also directs UF's Seahorse Key Marine Laboratory, located in the Cedar Keys National Wildlife Refuge. McCleary hopes to build on earlier studies about the snakes' ecology and to explore whether evolutionary changes may have affected the composition of the snakes' venom.

"My interest is in the evolutionary aspect," McCleary said. "If these snakes already have an abundant source of dead prey, why do they need venom?"

Preliminary findings show some differences in venom components, he added.

Traditionally, venom has been collected from venomous snakes by manually restraining the animal behind the head and having it bite a rubber membrane connected to a collecting chamber.

"This requires the capture of an awake snake, which increases the risk of human envenomation and is also stressful to the snake," Heard said, adding that manual collection of venom also does not guarantee that all of the venom is collected.

The nerve stimulator is used in human anesthesia to measure the effect of muscle relaxants.

"It delivers a series of electric stimuli, of very low voltage and amperage, and causes no pain or tissue injury," Heard said. "The electrodes are placed behind the eye, across the area of the venom gland. The nerve stimulator sends a current across the gland, causing reflex contraction and expulsion of the venom."

The technique allows collection from snakes that might not otherwise give up their venom, which is an essential in the process of creating antivenins for victims of snake bite, Heard said.

"The stimulator is battery-powered and relatively inexpensive," he said. "In addition, the anesthetic we used, known as propofol, can easily be transported."

Propofol, which has been prominent in news headlines recently as being linked to the death of singer Michael Jackson, is a short acting anesthetic administered by intravenous injection. The drug is commonly used to anesthetize animals in veterinary clinical practice, but it is not believed to have previously been used to anesthetize snakes for venom collection.

Sarah Carey | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Make way for the mini flying machines
21.03.2018 | American Chemical Society

nachricht New 4-D printer could reshape the world we live in
21.03.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>