Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New study identifies novel role for PEA-15 protein in cancer growth

Discovery finds protein can enhance cancer cell proliferation

A new study from the University of Hawaii Cancer Center reveals that PEA-15, a protein previously shown to slow ovarian tumor growth and metastasis, can alternatively enhance tumor formation in kidney cells carrying a mutation in a cancer-promoting gene called H-Ras.

The H-Ras oncogene is mutated in many human malignancies, and previous reports have shown the ability of H-Ras to contribute to the development, proliferation and metastasis of these tumors. Conversely, PEA-15 had been reported to inhibit tumor cell proliferation and metastasis by opposing H-Ras signals. In ovarian and breast cancer, PEA-15 is proposed to have promising therapeutic potential and in ovarian cancer PEA-15 has shown promise as a marker of prolonged patient survival.

This new study is the first finding of a pro-cancer effect of PEA-15 on proliferation and as such suggests caution in pursuing the use of PEA-15 as an anti-cancer therapeutic. The study results were published online today in the journal Oncogene.

"Our findings reveal a surprising mechanism by which PEA-15 can enhance H-Ras driven transformation of cells, rather than stop it," said Joe W. Ramos, Ph.D., associate professor at the University of Hawaii Cancer Center and co-director of its Cancer Biology Program. "We showed that in a common scenario in which a cell contains a Ras mutation, PEA-15 can accelerate the rate of tumor formation both in vitro and in vivo," he added.

In contrast to reports suggesting a tumor-suppressor function of PEA-15, Ramos said the discovery confirms that PEA 15 expression can also trigger tumor growth. "What we now know is that PEA-15 can either enhance or impair the formation of tumors depending on the signaling pathways active in a specific tumor cell."

"As with most cancers, an interplay of factors determines the fate of a patient," noted Florian Sulzmaier, a researcher at the UH Cancer Center and first author of the newly published study. "PEA-15 might still be worth considering for treatment of certain cancers. However, care should be taken in tumor types that carry Ras mutations that could change the outcome of a therapy."

The article, PEA-15 potentiates H-Ras-mediated epithelial cell transformation through phospholipase , appeared in today's online edition of Oncogene. Ramos' colleagues included researchers from the University of Hawaii, the Cancer Institute of New Jersey and the Academic Medical Center, University of Amsterdam, The Netherlands.

This study was supported by a grant from the National Institutes of Health National Cancer Institute and National Institute of General Medicine, and the Victoria S. and Bradley Geist Foundation.

The University of Hawaii Cancer Center is one of 66 research institutions designated by the National Cancer Institute. Affiliated with the University of Hawaii at Manoa, the Center is dedicated to eliminating cancer through research, education and improved patient care. The building of a new state-of-the-art research center is currently underway, and is projected to open in early 2013. Learn more about our work at

The University of Hawaii at Manoa serves approximately 20,000 students pursuing more than 225 different degrees. Coming from every Hawaiian island, every state in the nation, and more than 100 countries, UH Manoa students thrive in an enriching environment for the global exchange of ideas. For more information, visit and

Kellie Tormey | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>