Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds vulnerability in malaria parasite

28.11.2013
Highlights possible new approach to treatment

An international team of scientists, including researchers at Columbia University Medical Center (CUMC), has identified a key metabolic enzyme that common malaria parasites require for survival at each stage of infection in humans.


These are malaria parasites (labeled with flourescent protein) in the late stages of development, superimposed on a field of red blood cells. The many nuclei of the parasites' daughter cells are labeled in blue, and the plasma membranes surrounding the daughter cells are labeled in green. Imidazopyrazine treatment disrupts formation of the membranes around the daughter cells.

Credit: Marcus C.S. Lee, Ph.D./Columbia University Medical Center

The findings raise the possibility of a new approach to combating malaria, one of the world's deadliest diseases. The study was published today in the online edition of the journal Nature.

"Perhaps the most exciting aspect of our findings is that this enzyme is required at all stages of the parasites' life cycle in humans," said co-first author Marcus C.S. Lee, PhD, associate research scientist in microbiology & immunology at CUMC.

"This is important because most antimalarials are effective at killing the parasites only as they circulate in the bloodstream. However, the parasites can hide in the liver for years before reemerging and triggering a relapse of the disease. By identifying this enzyme, we may be able to develop a new way to kill the parasites in their dormant stage."

The other co-first author is Case W. McNamara, PhD, research investigator at the Genomics Institute for the Novartis Research Foundation. The study leaders are Elizabeth A. Winzeler, PhD, professor of pharmacology and drug discovery at University of California San Diego, and Thierry Diagana, head of Novartis Institute for Tropical Diseases in Singapore.

The enzyme — phosphatidylinositol 4-kinase (PI4K) — was found by screening more than a million drug compounds against Plasmodium falciparum, the parasite responsible for the most lethal form of malaria. Using this screen, the researchers found a class of compounds known as imidazopyrazines, which are capable of killing several species of Plasmodium at each stage of the parasites' life cycle in its vertebrate host. Also important, the compounds had no effect on human cells.

The researchers identified the target of the imidazopyrazines by evolving parasite cell lines that were resistant against the drugs and then analyzing the parasites' genomes for the changes responsible for conferring resistance. Those genetic changes pointed to the gene that encodes PI4K.

The CUMC team, led by David Fidock, PhD, professor of microbiology & immunology and medical sciences (in medicine), used novel genetic tools to confirm that PI4K was being directly targeted by the imidazopyrazines.

Then, using cellular imaging, the CUMC team found that imidazopyrazines interfere with the function of PI4K on the parasite Golgi (the organelle that packages proteins for delivery to other cellular destinations). "We think that disrupting the function of PI4K at the Golgi stops the parasite from making new membranes around its daughter cells, thereby preventing the organism from reproducing," said Dr. Lee.

Because PI4K is also found in humans, Dr. Winzeler said, the next challenge is to develop a drug that retains selectivity between the parasite and human versions of the enzyme. "As we now know the identity of this protein and hope to soon solve its structure, this task should be much easier," she said.

The paper is titled, "Targeting Plasmodium phosphatidylinositol 4-kinase to eliminate malaria." The other contributors are: Chek Shik Lim (Novartis Institutes for Tropical Disease, Singapore), Siau Hoi Lim (Novartis), Jason Roland (UCSD), Advait Nagle (UCSD), Oliver Simon (Novartis), Bryan K.S. Yeung (Novartis), Arnab K. Chatterjee (UCSD), Susan L. McCormack (UCSD), Micah J. Manary (UCSD), Anne-Marie Zeeman (Biomedical Primate Research Centre, Rijswijk, the Netherlands), Koen J. Dechering (TropIQ Health Sciences, Nijmegen, the Netherlands), T.R. Santha Kumar (CUMC), Philipp P. Henrich (CUMC), Kerstin Gagaring (UCSD), Maureen Ibanez (UCSD), Nobutaka Kato (UCSD), Kelli L. Kuhen (UCSD), Christoph Fischli (Swiss Tropical and Public Health Institute, Basel, Switzerland), Matthias Rottmann (Swiss Tropical and Public Health Institute and University of Basel, Basel, Switzerland), David M. Plouffe (UCSD), Badry Bursulaya (UCSD), Stephan Meister UCSD), Lucia Rameh (Boston University, Boston), Joerg Trappe (Novartis Institutes for BioMedical Research, Basel, Switzerland), Dorothea Haasen (Novartis, Basel, Switzerland), Martijn Timmerman (TropIQ Health Sciences), Robert W. Sauerwein (Trop IQ Health Sciences and Radboud University, Nijmegen Medical Centre, Nijmegen, the Netherlands), Rossarin Suwanarusk (Agency for Science Technology and Research, Biopolis, Singapore), Bruce Russell (Agency for Science Technology and Research and National University of Singapore, National University Health System, Singapore), Laurent Renia (Agency for Science Technology and Research), Francois Nosten (University of Oxford, Oxford, UK, and Mahidol University, Mae Sot, Thailand), David C. Tully (UCSD), Clemens HM Kocken (Biomedical Primate Research Centre), Richard J. Glynne (UCSD), Christophe Bodenreider (Novartis, Singapore), and Thierry T. Diagana (Norvartis, Singapore).

The authors wish to disclose the following, which may be considered a conflict of interest: C.W.M, C.S.L, S.H.L, J.R., O.S., B.K.S.Y., K.L.K., K.G., D.M.P., B.B., J.T., D.H., D.T., R.J.G., C.B. and T.T.D. are employed by Novartis. C.W.M, J.R., K.L.K., B.B., J.T., D.H., D.T., R.J.G, T.T.D. and E.A.W. own shares of Novartis AG stock. E.A.W. has received grants from Novartis.

The study was supported by grants from the Wellcome Trust (WT078285 and WT096157) and funding from the Medicines for Malaria Venture at the Genomics Institute of the Novartis Research Foundation, the Swiss Tropical and Public Health Institute, Columbia University, the Novartis Institute for Tropical Diseases, the Singapore Immunology Network and Horizontal Programme on Infectious Diseases under the Agency Science Technology and Research, and the Wellcome Trust (UK). SMRU is sponsored by the Wellcome Trust of Great Britain, as part of the Oxford Tropical Medicine Research Programme of Wellcome Trust-Mahidol University. E.A.W. and D.A.F. are supported by grants from the Bill and Melinda Gates Foundation, MMV, and the NIH (R01AI090141 to E.A.W. and R01085584 and R01079709 to D.A.F.).

Columbia University Medical Center provides international leadership in basic, preclinical, and clinical research; medical and health sciences education; and patient care. The medical center trains future leaders and includes the dedicated work of many physicians, scientists, public health professionals, dentists, and nurses at the College of Physicians and Surgeons, the Mailman School of Public Health, the College of Dental Medicine, the School of Nursing, the biomedical departments of the Graduate School of Arts and Sciences, and allied research centers and institutions. Columbia University Medical Center is home to the largest medical research enterprise in New York City and State and one of the largest faculty medical practices in the Northeast. For more information, visit cumc.columbia.edu or columbiadoctors.org.

Karin Eskenazi | EurekAlert!
Further information:
http://www.columbia.edu

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>