Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Finds Variations In One Gene May Be Associated With Endurance Running

19.02.2010
A few minor variations in one gene may make a difference in athletic endurance, according to a new study from Physiological Genomics.

The study found that elite endurance athletes were more likely to have variations of the NRF2 gene than elite sprinters. Non-elite endurance athletes were also more likely to have the genetic variations compared to sprinters, although the difference was not as pronounced.

The study shows an association between the gene variation and endurance, but does not establish a cause-effect relationship. Future studies are needed to unravel exactly what role the gene plays in athletic performance. The study is part of a larger body of research that is exploring the human genome and which aims to understand the genetic underpinnings of athletic performance.

Although the human genome is relatively uniform, there are variations among individuals. The researchers investigated the NRF2 gene because previous studies have shown that it may play a role in endurance performance because it:

helps produce new mitochondria, a key cellular structure that produces energy

reduces the harmful effects of oxidation and inflammation, which increase during exercise

“These findings suggest that harboring this specific genotype might increase the probability of being an endurance athlete,” said one of the authors, Nir Eynon of Wingate Institute in Israel. The study, “Interaction between SNPs in the NRF2 gene and elite endurance performance,” was carried out by Dr. Eynon, Alberto Jorge Alves, Moran Sagiv, Chen Yamin, Prof. Michael Sagiv and Dr. Yoav Meckel. All are at the Wingate Institute except for Alberto Alves, who is with the University of Porto in Portugal. The American Physiological Society (www.the-APS.org) published the study.

The Study

The study examined 155 track and field athletes who had competed in national or international track and field competitions. The athletes were further subdivided into endurance group (10,000 meter and marathon runners) and a sprint group (100- and 200-meter and long jump). The control group consisted of 240 non-athletic healthy individuals.

These groups were further divided into elite-level (those who had represented Israel in the world track and field championships or in the Olympics) and national-level (those who had competed in national competitions, but not international).

The study found that two variations in the NRF2 gene (specifically, the NRF2 A allele and the NRF2 C/T genotype) occurred more often in endurance athletes than in sprinters. “Eighty percent of the elite-level endurance athletes were carrying the A allele of the NRF2 A/C single nucleotide protein, compared to only 46% of the elite-level sprinters,” Nir. Eynon said. The study also found that the combined NRF2 AA+ NRF2 C/T genotype was more frequent in endurance athletes than in the sprinters group and the control group.

“So,” concludes Eynon, “some of us are truly born to run.”

Physiology is the study of how molecules, cells, tissues and organs function to create health or disease. The American Physiological Society (APS) has been an integral part of this scientific discovery process since it was established in 1887.

Donna Krupa | EurekAlert!
Further information:
http://www.the-aps.org

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>