Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study finds plant proteins control chronic disease in Toxoplasma infections

09.04.2013
University of South Florida-led research sheds light on malaria-related parasite's transition from acute to chronic stage

A new discovery about the malaria-related parasite Toxoplasma gondii -- which can threaten babies, AIDS patients, the elderly and others with weakened immune function -- may help solve the mystery of how this single-celled parasite establishes life-long infections in people.

The study, led by a University of South Florida research team, places the blame squarely on a family of proteins, known as AP2 factors, which evolved from the regulators of flowering in plants.

In findings published today in the Proceedings of the National Academy of Sciences, the researchers demonstrate AP2 factors are instrumental in flipping a developmental "switch" that transitions the parasite from a rapidly dividing form destructive to healthy tissue to a chronic stage invisible to the immune system. They identified one factor, AP2IX-9, that appears to restrict development of Toxoplasma cysts that settle quietly in various tissues, most commonly the host's brain.

A better understanding of how the switch mechanism works may eventually lead to ways to block chronic Toxoplasma infections, said study principal investigator Michael White, PhD, professor of global health and molecular medicine at USF Health and a member of the Center of Drug Discovery and Innovation, a Florida Center of Excellence at USF.

White and his colleagues are among the world's leading experts in T. gondii, combining approaches from biochemistry, genetics and structural biology to look for new ways to combat the parasitic disease toxoplasmosis.

No drugs or vaccines currently exist to treat or prevent the chronic stage of the disease. The T. gondii parasites may remain invisible to the immune system for years and then reactivate when immunity wanes, boosting the risk for recurrent disease.

"The evolutionary story of Toxoplasma is fascinating," White said. "We were blown away to find that the AP2 factors controlling how a flower develops and how plants respond to poor soil and water conditions have been adapted to work within an intracellular human parasite."

Ages ago the ancestors of malaria parasites genetically merged with an ancestor of plants, and the primitive plant donated its AP2 factors to the future malaria family.

"Our study showed that, like the AP2 factors help a plant survive a stressful environment, the AP2 factors of T. gondii help the parasite decide when the time is right to grow or when to form a tissue cyst that may lie dormant in people for many years," White said.

Toxoplasmosis, the infection caused T. gondii, is commonly associated with the medical advice that pregnant women should avoid contact with litter boxes. That's because infected cats play a big role in spreading the disease. The tiny organism thrives in the guts of cats, producing countless egg-like cells that are passed along in the feces and can live in warm moist soil or water for months.

People can acquire toxoplasmosis several ways, usually by exposure to the feces of cats or other infected animals, by eating undercooked meat of infected animals, or drinking water contaminated with T. gondii.

Up to 30 percent of the world's population is estimated to be infected with the T. gondii parasite. In some parts of the world, including places where sanitation is poor and eating raw or undercooked meat is customary, nearly 100 percent of people carry the parasite, White said.

Few experience flu-like symptoms because the immune system usually prevents the parasite from causing illness, but for those who are immune deficient the consequences can be severe.

The disease may be deadly in AIDS patients, organ transplant recipients, patients receiving certain types of chemotherapy, and infants born to mothers infected with the parasite during or shortly before pregnancy. Recently, toxoplasmosis has been linked to mental illness, such as schizophrenia and other diseases of dementia, and changes in behavior.

Because it is common, complex and not easily killed with standard disinfection measures, the toxoplasma parasite is a potential weapon for bioterrorists, White added.

The USF-led study was supported by grants from the National Institutes of Health. White's team worked with researchers at Princeton University, Albert Einstein College of Medicine, and Indiana University School of Medicine. Joshua Radke, a PhD student in the USF Health Department of Molecular Medicine, was a first author of the study.

Article citation: "ApiAP2 transciption factor restricts development of the Toxoplasma tissue cyst;" Joshua B. Radke, Oliver Lucas, Erandi K. DeSilva, YanFen Ma, William J. Sullivan, Jr., Louis M. Weiss, Manuel Llinas, and Michael W. White; Proceedings of the National Academy of Sciences; http://www.pnas.org/cgi/doi/10.1073/pnas.1300059110

USF Health's mission is to envision and implement the future of health. It is the partnership of the USF Health Morsani College of Medicine, the College of Nursing, the College of Public Health, the College of Pharmacy, the School of Biomedical Sciences and the School of Physical Therapy and Rehabilitation Sciences; and the USF Physician's Group. The University of South Florida is a global research university ranked 50th in the nation by the National Science Foundation for both federal and total research expenditures among all U.S. universities. For more information, visit http://www.health.usf.edu

Anne DeLotto Baier | EurekAlert!
Further information:
http://www.usf.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>