Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Finds Bees Can Learn Differences in Food’s Temperature

18.11.2009
Biologists at UC San Diego have discovered that honeybees can discriminate between food at different temperatures, an ability that may assist bees in locating the warm, sugar-rich nectar or high-protein pollen produced by many flowers.

While other researchers had previously found hints that bees might have the ability to do this, the UCSD biologists provide the first detailed experimental evidence in a paper that will be published in the December 1 issue of the Journal of Experimental Biology. An early online version of the paper is being made available by the journal this week.

“We show that honeybees have the ability to associate temperature differences with food,” said James Nieh, an associate professor of biology who headed the study. “This information may help guide bees looking for food by allowing them to distinguish which bees are returning to the hive with the highest quality of food.”

“Body temperature is seen in terms of its net caloric benefit to the other foragers,” said Nieh. “The warmest forager in the nest is the one most likely to be visiting of the sweetest, highest quality food.”

Nieh and researchers in his laboratory last year published a paper showing that bumblebees returning to their nests with higher quality pollen were warmer than bees that collected pollen with less protein. That gave the UCSD scientists evidence that bees may change their body temperature to reflect food quality, even for food that they do not consume and that has no direct metabolic impact on the bee.

Knowing that honeybees sense the temperature of returning foragers with their antennae, while these foragers conduct elaborate dances within the hive to communicate food location, Nieh and his colleagues wondered whether bees also sensed the temperature of their food. With the help of two undergraduate students, Tobin Hammer and Curtis Hata, he sought to find out whether bees possessed this ability.

Training bees to stick out their tongues in return for a sugary reward when the team touched a warm surface to a bee’s antenna, the researchers found that bees could learn to identify warmth with food. Next, they tested whether the bees could learn to associate temperature differences with a food reward and discovered that this was also the case.

However, while the bees’ abilities to recognize the temperature difference increased dramatically as the differences in temperatures rose, the scientists discovered that the bees were better at recognizing warm temperature differences than they were at cold temperature differences. In fact, the bees’ abilities were twice as good at recognizing differences of 10 degrees Celsius above room temperature than they were at recognizing differences of minus 10 degrees Celsius below room temperature.

The researchers point out in their paper that this enhanced ability to distinguish warmer temperature differences could be an advantage for gathering nectar in many flowers. During the day, they note, temperatures in the centers of daffodils can be up to 8 degrees Celsius warmer than they are outside the flowers.

“A honeybee’s ability to associate positive temperature differences with nectar rewards could also have a natural role inside the nest,” the researchers conclude in their paper. “Honeybee foragers can elevate their body temperature after returning from a high-quality food source, and foragers returning from natural nectar or pollen sources increase their thoracic temperature when the colony has need for these resources.”

The study was supported by the UC San Diego Opportunities for Research in Behavioral Sciences Program, which is supported by the National Science Foundation. ORBS is a program for high school students and undergraduates that provides research experience for students who are traditionally underrepresented in the sciences.

Media Contact: Kim McDonald, (858) 534-7572, kmcdonald@ucsd.edu

Kim McDonald | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Ambush in a petri dish
24.11.2017 | Friedrich-Schiller-Universität Jena

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>