Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Finds Bees Can Learn Differences in Food’s Temperature

18.11.2009
Biologists at UC San Diego have discovered that honeybees can discriminate between food at different temperatures, an ability that may assist bees in locating the warm, sugar-rich nectar or high-protein pollen produced by many flowers.

While other researchers had previously found hints that bees might have the ability to do this, the UCSD biologists provide the first detailed experimental evidence in a paper that will be published in the December 1 issue of the Journal of Experimental Biology. An early online version of the paper is being made available by the journal this week.

“We show that honeybees have the ability to associate temperature differences with food,” said James Nieh, an associate professor of biology who headed the study. “This information may help guide bees looking for food by allowing them to distinguish which bees are returning to the hive with the highest quality of food.”

“Body temperature is seen in terms of its net caloric benefit to the other foragers,” said Nieh. “The warmest forager in the nest is the one most likely to be visiting of the sweetest, highest quality food.”

Nieh and researchers in his laboratory last year published a paper showing that bumblebees returning to their nests with higher quality pollen were warmer than bees that collected pollen with less protein. That gave the UCSD scientists evidence that bees may change their body temperature to reflect food quality, even for food that they do not consume and that has no direct metabolic impact on the bee.

Knowing that honeybees sense the temperature of returning foragers with their antennae, while these foragers conduct elaborate dances within the hive to communicate food location, Nieh and his colleagues wondered whether bees also sensed the temperature of their food. With the help of two undergraduate students, Tobin Hammer and Curtis Hata, he sought to find out whether bees possessed this ability.

Training bees to stick out their tongues in return for a sugary reward when the team touched a warm surface to a bee’s antenna, the researchers found that bees could learn to identify warmth with food. Next, they tested whether the bees could learn to associate temperature differences with a food reward and discovered that this was also the case.

However, while the bees’ abilities to recognize the temperature difference increased dramatically as the differences in temperatures rose, the scientists discovered that the bees were better at recognizing warm temperature differences than they were at cold temperature differences. In fact, the bees’ abilities were twice as good at recognizing differences of 10 degrees Celsius above room temperature than they were at recognizing differences of minus 10 degrees Celsius below room temperature.

The researchers point out in their paper that this enhanced ability to distinguish warmer temperature differences could be an advantage for gathering nectar in many flowers. During the day, they note, temperatures in the centers of daffodils can be up to 8 degrees Celsius warmer than they are outside the flowers.

“A honeybee’s ability to associate positive temperature differences with nectar rewards could also have a natural role inside the nest,” the researchers conclude in their paper. “Honeybee foragers can elevate their body temperature after returning from a high-quality food source, and foragers returning from natural nectar or pollen sources increase their thoracic temperature when the colony has need for these resources.”

The study was supported by the UC San Diego Opportunities for Research in Behavioral Sciences Program, which is supported by the National Science Foundation. ORBS is a program for high school students and undergraduates that provides research experience for students who are traditionally underrepresented in the sciences.

Media Contact: Kim McDonald, (858) 534-7572, kmcdonald@ucsd.edu

Kim McDonald | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>