Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Explores the Roots of Cooperation Between Plants and Fungi

15.08.2011
Research published Aug. 12 in the prestigious journal Science sheds light on free-market style cooperation between plants and fungi in what is arguably the most important symbiosis on Earth.

Science is commonly regarded as one of the top science journals in the world.

The groundbreaking study helps explain how plants were able to colonize the land in Earth’s distant past, and what mechanisms stabilize cooperation between plants and fungi in the arbuscular mycorrhizal symbiosis.

The work shows that plants can detect and reward fungi that provide more benefits to the plant by reciprocating with more carbohydrates. In turn the fungal partners enforce cooperation by increasing the transfer of mineral nutrients such as phosphorus to roots that provide more carbohydrates.

“Cooperation is only stable because both partners are able to preferentially reward the other,” said associate professor Heike Bücking of South Dakota State University’s Department of Biology and Microbiology, one of the co-authors of the study. “This provides a clear example of how cooperation can be stabilized in a form analogous to a market economy, where there are competitive partners on both sides of the interaction and higher benefits are remunerated in both directions.”

South Dakota State University Ph.D. students Jerry A. Mensah and Carl R. Fellbaum, both in SDSU’s Department of Biology and Microbiology, and Bücking´s former M.S. student Yugandhar Beesetty, are also among the co-authors of the study, “Reciprocal Rewards Stabilize Cooperation in the Mycorrhizal Symbiosis.”

The project was developed in close cooperation with Toby Kiers from the Free University in Amsterdam, Netherlands. Other co-authors from other research institutions include Marie Duhamel, Oscar Franken, Erik Verbruggen, George A. Kowalchuk, Miranda M. Hart, Alberto Bago, Todd M. Palmer, Stuart A. West, Philippe Vandenkoornhuyse, and Jan Jansa.

Bücking said cooperation between plants and arbuscular mycorrhizal fungi, is ancient and is thought to have made it possible for plants to colonize land some 470 million years ago. The partnership is thought to have developed long before mutualisms among insects or vertebrates. But researchers didn´t know what selective forces plants and AM fungi use to maintain cooperation and to prevent “cheating”.

Plants are typically colonized by multiple fungal species and fungal “individuals” can simultaneously interact with multiple host plants, and this would allow “cheaters” to exploit the benefits provided by others while avoiding the costs of supplying resources.

Bücking said a general feature of many mutualisms in nature is that one partner appears to be “in control” and has either domesticated the other partner or enforces cooperation through punishment or sanction mechanisms. In contrast, in the plant-fungal interactions the researchers studied, both sides interact with multiple partners, so neither partner can be “enslaved.”

An explanation of how plants and AM fungi maintain stable, mutually beneficial relationships is that both plants and fungi are able to detect variations in the resources supplied by their partners, allowing them to adjust their resource allocation accordingly — a kind of “biological market” for the trading of commodities that confer benefits.

The study used fungal genotypes that differ in their cooperative behavior to compete directly on a single root system. The researchers used a technique called stable isotope probing, or SIP, to track and quantify the plant resources allocated to individual fungal species. These studies showed that host plants preferentially allocate more resources to fungi that provide more benefit and that this reward mechanism also works on a very small spatial scale.

Control is bi-directional in this symbiosis, Bücking said. In economic terms, partners offering the best rate of exchange are rewarded.

The scientists used a legume called barrel medic or barrel clover, Medicago truncatula, to botanists, for the research. The study used three arbuscular mycorrhizal fungal species within a single subgenus, Glomus intraradices, Glomus custos, and Glomus aggregatum. Researchers also used transformed carrot root tissue cultures grown on Petri dishes.

The studies were supported by the National Science Foundation. Heike Bücking and her collaborators, Toby Kiers and Miranda Hart, recently received an additional award from the National Science Foundation of $450,000 for the project, “Cooperation and punishment in the arbuscular mycorrhizal symbiosis,” that will allow the researchers to continue these groundbreaking studies.

Lance Nixon | Newswise Science News
Further information:
http://www.sdstate.edu

Further reports about: Roots carbohydrates fungi host plants market economy microbiology synthetic biology

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>