Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Explores the Roots of Cooperation Between Plants and Fungi

15.08.2011
Research published Aug. 12 in the prestigious journal Science sheds light on free-market style cooperation between plants and fungi in what is arguably the most important symbiosis on Earth.

Science is commonly regarded as one of the top science journals in the world.

The groundbreaking study helps explain how plants were able to colonize the land in Earth’s distant past, and what mechanisms stabilize cooperation between plants and fungi in the arbuscular mycorrhizal symbiosis.

The work shows that plants can detect and reward fungi that provide more benefits to the plant by reciprocating with more carbohydrates. In turn the fungal partners enforce cooperation by increasing the transfer of mineral nutrients such as phosphorus to roots that provide more carbohydrates.

“Cooperation is only stable because both partners are able to preferentially reward the other,” said associate professor Heike Bücking of South Dakota State University’s Department of Biology and Microbiology, one of the co-authors of the study. “This provides a clear example of how cooperation can be stabilized in a form analogous to a market economy, where there are competitive partners on both sides of the interaction and higher benefits are remunerated in both directions.”

South Dakota State University Ph.D. students Jerry A. Mensah and Carl R. Fellbaum, both in SDSU’s Department of Biology and Microbiology, and Bücking´s former M.S. student Yugandhar Beesetty, are also among the co-authors of the study, “Reciprocal Rewards Stabilize Cooperation in the Mycorrhizal Symbiosis.”

The project was developed in close cooperation with Toby Kiers from the Free University in Amsterdam, Netherlands. Other co-authors from other research institutions include Marie Duhamel, Oscar Franken, Erik Verbruggen, George A. Kowalchuk, Miranda M. Hart, Alberto Bago, Todd M. Palmer, Stuart A. West, Philippe Vandenkoornhuyse, and Jan Jansa.

Bücking said cooperation between plants and arbuscular mycorrhizal fungi, is ancient and is thought to have made it possible for plants to colonize land some 470 million years ago. The partnership is thought to have developed long before mutualisms among insects or vertebrates. But researchers didn´t know what selective forces plants and AM fungi use to maintain cooperation and to prevent “cheating”.

Plants are typically colonized by multiple fungal species and fungal “individuals” can simultaneously interact with multiple host plants, and this would allow “cheaters” to exploit the benefits provided by others while avoiding the costs of supplying resources.

Bücking said a general feature of many mutualisms in nature is that one partner appears to be “in control” and has either domesticated the other partner or enforces cooperation through punishment or sanction mechanisms. In contrast, in the plant-fungal interactions the researchers studied, both sides interact with multiple partners, so neither partner can be “enslaved.”

An explanation of how plants and AM fungi maintain stable, mutually beneficial relationships is that both plants and fungi are able to detect variations in the resources supplied by their partners, allowing them to adjust their resource allocation accordingly — a kind of “biological market” for the trading of commodities that confer benefits.

The study used fungal genotypes that differ in their cooperative behavior to compete directly on a single root system. The researchers used a technique called stable isotope probing, or SIP, to track and quantify the plant resources allocated to individual fungal species. These studies showed that host plants preferentially allocate more resources to fungi that provide more benefit and that this reward mechanism also works on a very small spatial scale.

Control is bi-directional in this symbiosis, Bücking said. In economic terms, partners offering the best rate of exchange are rewarded.

The scientists used a legume called barrel medic or barrel clover, Medicago truncatula, to botanists, for the research. The study used three arbuscular mycorrhizal fungal species within a single subgenus, Glomus intraradices, Glomus custos, and Glomus aggregatum. Researchers also used transformed carrot root tissue cultures grown on Petri dishes.

The studies were supported by the National Science Foundation. Heike Bücking and her collaborators, Toby Kiers and Miranda Hart, recently received an additional award from the National Science Foundation of $450,000 for the project, “Cooperation and punishment in the arbuscular mycorrhizal symbiosis,” that will allow the researchers to continue these groundbreaking studies.

Lance Nixon | Newswise Science News
Further information:
http://www.sdstate.edu

Further reports about: Roots carbohydrates fungi host plants market economy microbiology synthetic biology

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>