Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study Explores the Roots of Cooperation Between Plants and Fungi

Research published Aug. 12 in the prestigious journal Science sheds light on free-market style cooperation between plants and fungi in what is arguably the most important symbiosis on Earth.

Science is commonly regarded as one of the top science journals in the world.

The groundbreaking study helps explain how plants were able to colonize the land in Earth’s distant past, and what mechanisms stabilize cooperation between plants and fungi in the arbuscular mycorrhizal symbiosis.

The work shows that plants can detect and reward fungi that provide more benefits to the plant by reciprocating with more carbohydrates. In turn the fungal partners enforce cooperation by increasing the transfer of mineral nutrients such as phosphorus to roots that provide more carbohydrates.

“Cooperation is only stable because both partners are able to preferentially reward the other,” said associate professor Heike Bücking of South Dakota State University’s Department of Biology and Microbiology, one of the co-authors of the study. “This provides a clear example of how cooperation can be stabilized in a form analogous to a market economy, where there are competitive partners on both sides of the interaction and higher benefits are remunerated in both directions.”

South Dakota State University Ph.D. students Jerry A. Mensah and Carl R. Fellbaum, both in SDSU’s Department of Biology and Microbiology, and Bücking´s former M.S. student Yugandhar Beesetty, are also among the co-authors of the study, “Reciprocal Rewards Stabilize Cooperation in the Mycorrhizal Symbiosis.”

The project was developed in close cooperation with Toby Kiers from the Free University in Amsterdam, Netherlands. Other co-authors from other research institutions include Marie Duhamel, Oscar Franken, Erik Verbruggen, George A. Kowalchuk, Miranda M. Hart, Alberto Bago, Todd M. Palmer, Stuart A. West, Philippe Vandenkoornhuyse, and Jan Jansa.

Bücking said cooperation between plants and arbuscular mycorrhizal fungi, is ancient and is thought to have made it possible for plants to colonize land some 470 million years ago. The partnership is thought to have developed long before mutualisms among insects or vertebrates. But researchers didn´t know what selective forces plants and AM fungi use to maintain cooperation and to prevent “cheating”.

Plants are typically colonized by multiple fungal species and fungal “individuals” can simultaneously interact with multiple host plants, and this would allow “cheaters” to exploit the benefits provided by others while avoiding the costs of supplying resources.

Bücking said a general feature of many mutualisms in nature is that one partner appears to be “in control” and has either domesticated the other partner or enforces cooperation through punishment or sanction mechanisms. In contrast, in the plant-fungal interactions the researchers studied, both sides interact with multiple partners, so neither partner can be “enslaved.”

An explanation of how plants and AM fungi maintain stable, mutually beneficial relationships is that both plants and fungi are able to detect variations in the resources supplied by their partners, allowing them to adjust their resource allocation accordingly — a kind of “biological market” for the trading of commodities that confer benefits.

The study used fungal genotypes that differ in their cooperative behavior to compete directly on a single root system. The researchers used a technique called stable isotope probing, or SIP, to track and quantify the plant resources allocated to individual fungal species. These studies showed that host plants preferentially allocate more resources to fungi that provide more benefit and that this reward mechanism also works on a very small spatial scale.

Control is bi-directional in this symbiosis, Bücking said. In economic terms, partners offering the best rate of exchange are rewarded.

The scientists used a legume called barrel medic or barrel clover, Medicago truncatula, to botanists, for the research. The study used three arbuscular mycorrhizal fungal species within a single subgenus, Glomus intraradices, Glomus custos, and Glomus aggregatum. Researchers also used transformed carrot root tissue cultures grown on Petri dishes.

The studies were supported by the National Science Foundation. Heike Bücking and her collaborators, Toby Kiers and Miranda Hart, recently received an additional award from the National Science Foundation of $450,000 for the project, “Cooperation and punishment in the arbuscular mycorrhizal symbiosis,” that will allow the researchers to continue these groundbreaking studies.

Lance Nixon | Newswise Science News
Further information:

Further reports about: Roots carbohydrates fungi host plants market economy microbiology synthetic biology

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>